LANTRONIX

Application Note:

xPico® 250 + BLE Application Note

7535 Irvine Center Drive
Suite 100
Irvine, CA 92618 USA

Tel: (800) 526-8766
Tel: +1 (949) 453-3990
Fax: +1 (949) 453-3995
sales@lantronix.com

Contents

Introduction

GENEIIC ACCESS PrOfllE ... ittt ettt e eae e page 3
GeneriC AttHDULES (GATT) ..o oo page 5
Register GATT EvVent CallbDacK............oooiiiiiiee e page 5
CoNNECE 10 PEIPNEIAL ... et e e e e e e e aaea e page 6
DiscoVEr HEArt RAt@ SEIVICEocooiiiii ettt et e e et e e e e aaeaeenees page 6
DiISCOVEN CharaCteriSTICS.ccouiiii e e e e e et eeeeaees page 7
Discover CharacteriStic DESCIIPIOISociiiuiiii et page 8
ENADIE NOTHICAtIONS. ...t e e et e e e enee e page 8
Receiving Heart RAte VAlUE...........c..viiiii e et page 9
Publish Data on Local Web Server ..., page 9
] (oo []o3 4o o [N SRR page 9
Custom URI for DYNamiC Datac..ooocuiiiiiiie et et e etee e e page 9
A SIMPIE WEDPAGE ...ttt aae e page 10
Install and Run the AppliCationoooiiiiee e page 11

Lantronix, Inc. has made reasonable efforts to ensure the accuracy of the information contained herein as of the date of this publication but does not warrant that the infor-
mation is accurate or complete. Lantronix undertakes no obligation to update the information in this publication. Lantronix specifically disclaims any and all liability for loss
or damages of any kind resulting from decisions made or actions taken by any party based on this information. © 2018 Lantronix is a registered trademark of Lantronix, Inc.
xPico is a trademark of Lantronix, Inc. All other trademarks are the property of their respective owners. Specifications subject to change without notice. All rights reserved.

1 Introduction

Heart rate sensors are popular devices used for exercise. Many of these sensors
use Bluetooth Low Energy (BLE) to connect to another device such as a fitness
watch or smartphone for display and tracking of the user’s heart rate.

This application note explores how to use an embedded Ethernet, Wi-Fi,
and Bluetooth module to create a gateway that aggregates multiple BLE heart
rate monitors for publishing or displaying via the internet.

BLE Heart
Rate

R b
BLE Heart , Wi-Fi Web page
xPico 250 |«——— > with aggreg-
Rate
gated data

BLE Heart
Rate

2 Generic Access Profile

Every Bluetooth device has the Generic Access Profile (GAP) which contains
information such as the class of device, appearance characteristics, and other
manufacturer-specific data.!

The GAP is the information that is available to other devices without having
to initiate a connection first. For devices of the peripheral class, like a Heart
Rate Sensor, there are two ways that they will transmit their GAP: advertising
and scan response.

The device sends the advertisement at a set interval. The interval time is
defined by the device itself. The other option is for a device of type Central to
start a scan request. In that case, devices that are not connected will respond
with the scan response. For this application, the xPico 250 functions as a central
device to scan for peripheral devices.

Thttps://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile

BLE Heart

Rate
BLE Heart BLE Device
Rate
.
xPico 250
}\
BLE Device BLE Heart
Rate

BLE Device

%
Scan Request

Heart rate monitors identify themselves by having a value of 832 (Generic
Heart rate Sensor) or 833 (Heart Rate Sensor: Heart Rate Belt) as the appear-
ance in the GAP characteristics. This allows our client to filter which servers
to connect to by looking at the scan response data.

To get this data, we first need to issue a scan command. In the call to begin
the scan, we pass a callback that is executed when a scan response is received,
as well as when the scan process is complete:

wiced_bt_ble_scan(BTM_BLE_SCAN_TYPE_HIGH_DUTY, WICED_TRUE,
ble_scan_callback);

In the ble_scan_callback function, the responses are filtered for the Heart
rate sensor appearance values to be placed onto an array that the xPico 250
gateway keeps track of.

For general device design, it is possible to include custom data in the GAP.
This would allow a device to broadcast data to multiple clients that will be
listening for the advertisement. However this is not how heart rate sensors
work, so for this application, the next step is to connect to the device and read
the GATT.

3 Generic Attributes (GATT)

Once we identify via the GAP that we are interested in a device, we will connect
to the device and read the GATT.

3.1 Register GATT event callback

i BLE Heart
ico 20 Rate device
Scan Response _____------""""]
Scan -t
Callback BLE GATT Connect
Conr_ugc_tgcj___-_-—-—-—""”_
——
GATT Discover Services (by HR UUID)
Event D m
Callback o _lsic_‘)Y?r_Y_r_efl_l L
I ——

Before we can connect to the device in the ble_scan_callback, we need to
register another callback to be called when GATT events happen. This is done
early in the initialization of the Bluetooth stack:

wiced_bt_gatt_register(ble_gatt_event_callback);
Where the function prototype for the callback function is:

static wiced_bt_gatt_status_t ble_gatt_event_callback(wiced_bt_gatt_evt_t event,
wiced_bt_gatt_event_data_t *p_event_data) ;

The possible events when this is called are:

GATT_CONNECTION_STATUS_EVT The device connects or disconnects
GATT_DISCOVERY _RESULT_EVT Discovery results are available

GATT_DISCOVERY_CPLT_EVT No more GATT attributes to be discov-
ered

GATT_OPERATION_CPLT_EVT A GATT operation, such as a read, write,
notify, or indicate

GATT_ATTRIBUTE_REQUEST_EVT A GATT attribute request from a
remote client. Not applicable in this application since we are the client.

3.2 Connect to peripheral

After registering the callback, we can now connect to the device.

wiced_bt_gatt_le_connect ((message.device)->device_address, (message.device)->addr_type,
BLE_CONN_MODE_HIGH_DUTY, WICED_TRUE);

Once the connection is done the callback with GATT_CONNECTION_STATUS_EVT
event is called and we can now read the GATT Profile.
The profile for a device is organized with multiple services. Each service

can also have multiple characteristics. The following diagram shows an example
GATT profile:

Profile

Service

UUID

Characteristic
UUID

Descriptor

Value

.)
Each profile can include multiple services, and each service can include mul-
tiple characteristics.

3.3 Discover Heart Rate Service

In our application, we discover the address in the GATT (called the handle)
that the Heart Rate service is at by discovering by the UUID assigned to the
Heart Rate Service?:

#define HEART_RATE_SERVICE_GATT_UUID 0x180D

memset (&p_discovery_param, O, sizeof(wiced_bt_gatt_discovery_param_t));
p_discovery_param.s_handle 1;

p_discovery_param.e_handle = OxFFFF;

p_discovery_param.uuid.len = 2;

p_discovery_param.uuid.uu.uuid16 = HEART_RATE_SERVICE_GATT_UUID;

status = wiced_bt_gatt_send_discover(device—>conn_id,

2https://www.bluetooth.com/specifications/gatt /viewer?attributeXmlFile=org.bluetooth.service.heart_rate.xml

GATT_DISCOVER_SERVICES_BY_UUID, &p_discovery_param);

xPico 250 BLE Heart

Rate device

Discover characteristics

GATT >
Event
Callback

3.4 Discover characteristics

When the service discovery result is received, the GATT event callback is called.
We store the handle of the service, and then use that to discover all the char-
acteristics in the service.

memset (&p_discovery_param, O, sizeof (p_discovery_param));

p_discovery_param.s_handle = service_start_handle;

p_discovery_param.e_handle = service_end_handle;

status = wiced_bt_gatt_send_discover(p_event_data->discovery_complete.conn_id,
GATT_DISCOVER_CHARACTERISTICS, &p_discovery_param);

The GATT event callback is called, this time with each characteristic that
is inside the service. The Heart Rate Service characteristic has two mandatory
characteristics:

e Heart Rate Measurement
e Client Characteristic Configuration

It also has an optional characteristic named Body Sensor Location, and a
conditional one named Heart Rate Control Point. We will not be using these
two, but for more information you can see the specification?.

Shttps://www.bluetooth.com /specifications/gatt /viewer?attributeXmlFile=org.bluetooth.service.heart_rate.xml

3.5 Discover characteristic descriptors

BLE Heart
Rate device

xPico 250

GATT
Event
Callback Write to

Client Characteristic to enable Notifications

\J

The Heart Rate Measurement characteristic value cannot be read directly.
The specification shows that the value of this characteristic can only be re-
ceived through notifications. This means that the heart rate sensor device will
periodically send a new measurement when it has it.

The way to enable the notifications is to write to the Client Characteristic
Configuration. So when the GATT event callback is invoked with the charac-
teristic descriptors, the application will now filter by the Client Characteristic
Configuration UUID to find the handle.

3.6 Enable Notifications

Once all the characteristic descriptors are found, the application writes to the
Client Characteristic Configuration to enable notifications:

wiced_bt_gatt_value_t write_data;

write_data.auth_req = GATT_AUTH_REQ_NONE;

write_data.handle = temp_handle;

write_data.len = 2;

write_data.value[0] = 0x0001; // Enable notifications

status = wiced_bt_gatt_send_write(p_event_data->discovery_result.conn_id,
GATT_WRITE, &write_data);

3.7 Receiving heart rate value

; BLE Heart
2dien 2450 Rate device
e Heart Rate Value |
GATT
Event |e - - ___ Heart Rate Value |
Callback
e Heart Rate Valve |
Y

The device will now begin sending the heart rate value at a periodic interval.
Each time a value is received, the GATT event callback is invoked, and the
application will extract the value from the notification and store it in memory
to be used later when it needs to be displayed on the web page or sent to a
cloud system.

4 Publish data on local web server

4.1 Introduction

The xPico 250 has a built-in webserver that can show custom pages to a device
connected to any of the three network interfaces: Ethernet, Wi-Fi Client, and
Wi-Fi Soft Access Point. The web server can serve static pages that are stored
on the xPico 250’s flash file system, and it also allows an SDK application to
register a callback on a specific URI to return dynamic data. This application
uses both of these capabilities.

4.2 Custom URI for dynamic data

The first step is to register a specific URI that a webpage’s Javascript code will
access to get the dynamic data. This is done by using the built-in http library
of the xPico 250 SDK:

static const struct ltrx_http_dynamic_callback cb = {
.uriPath = "/bleScan",
.callback = webApiCbFunc

+;

void enableRestApi()

{
ltrx_http_dynamic_callback_register (&cb);

}

enableRestApi() is called in the _module_startup() function to register the
callback. After that, any HTTP transactions to the /bleScan URI will invoke
the webApiCbFunc() function to get the data. This function accesses the array
of devices that has been populated with data, and writes it in JSON format as
a response.

4.3 A simple webpage

This application includes HTML and Javascript files that are stored in the flash
file system of the xPico 250. The HTML page creates a simple block for each
heart rate sensor:

<div id="templateDisplay" class="deviceBlock border rounded clearfix" style="display:none;":
<div class="hrDisplay float-right" style="font-size: 48px;margin-right:20px;">0</div>
<div class="bleName">Name: </div>
<div class="bleRssi">RSSI: </div>
<div class="bleAddress">Address: </div>

</div>

The Javascript file uses the REST API to gather the data from the applica-
tion running on the xPico 250 and update the webpage with the results:

$.ajax({
type: ’GET’,
url: ’bleScan/getScanResults’,
dataType: ’json’,
success: function(response) {
$("#sensorDisplay") .empty () ;
$.each(response, function(idx, value) {
var d = $("#templateDisplay").clone();
d.prop(’id’, value.address)

.appendTo ("#sensorDisplay") ;
d.find(".bleName") .append(value.name) ;
d.find(".bleRssi") .append(value.rssi);
d.find(".hrDisplay") .text(value.heartrate);
d.data("appearance",value.appearance) ;
d.show();

s

The result is a page that displays the BLE heart rate sensors that are dis-
covered by the application:

10

&

[BLE Sensors x

C | (D 192.168.20.118/bleSensor.htm

Show only heart rate sensors
Name: Otbeat Flex
RSSI: -61 7 8

Name: Otbeat Flex

RSSI:-61 79

Scan Sensors

5 Install and run the application

Copy the source code from this application into the custom/module di-
rectory of the xPico 200 SDK installation. The module should be in a
directory called bleSensor.

Create a project in custom/project

Ensure that the modules.make file in your project directory includes the
bleSensor module

Build the project
Update firmware on xPico 250 with the firmware just created
Create the http directory in the xPico 250 filesystem

Upload the files from the http directory in the source package to the http
directory. Make sure to create the /http/js directory for the appropriate
files

e Power on a heart rate monitor

e Access the display with your browser, at: http://ip.address.of.device/bleSensor.html

12

	xPico 250 BLE Application Note Cover Pages
	BLE xPico 250 Application Note

