INTELLIGENT EDGE SOLUTIONS BY

LANTRONIX®

Qualcomm
System on Modules
Open-Q™ 845 µSOM (Micro System on Module)

Production-ready µSOM (Micro System on Module) based on the Qualcomm® SDA845 processor
Octa-core 64-bit Kryo™ CPU, Adreno™ 630 GPU & Hexagon™ 685 DSP
Dimensions 25mm x 50mm
Android™ 9 Pie, Linux®

Open-Q™ 835 µSOM (Micro System on Module)

Production-ready µSOM (Micro System on Module) based on the Qualcomm® 835 processor
Octa-core 64-bit Kryo™ CPU, Adreno™ 540 GPU & Hexagon™ DSP with dual HVX
Dimensions 25mm x 50mm
Android™ 8 Oreo™, Android™ 9 Pie

Open-Q™ 820Pro µSOM (Micro System on Module)

Production-ready µSOM based on long-life, higher-speed, Qualcomm® 820E (APQ8096SG) SoC
Quad-core 64-bit Kryo™ CPU @ 2.342 GHz, Adreno™ 530 GPU @ 652.8 MHz, Hexagon™ 680 DSP with HVX
Dimensions 25mm x 50mm
Android™ 9 Pie, Linux®

Open-Q™ 820 µSOM (Micro System on Module)

Production-ready µSOM (Micro System on Module) based on the Qualcomm® 820 processor
Quad-core 64-bit Kryo™ CPU, Adreno™ 530 GPU & Hexagon™ 680 DSP with HVX
Dimensions 25mm x 50mm
Android™ 7 Nougat, Android™ 8 Oreo™, Linux®, Android™ 9 Pie

Open-Q™ 820 SOM (System on Module)

Production-ready SOM (System on Module) based on the Qualcomm® 820 processor
Quad-core 64-bit Kryo™ CPU, Adreno™ 530 GPU & Hexagon™ 680 DSP with HVX
Dimensions 42mm x 82mm
Android™ 7 Nougat, Android™ 8 Oreo™, Linux, Android™ 9 Pie
Open-Q™ 660 µSOM (Micro System on Module)

Production-ready µSOM (Micro System on Module) based on the Qualcomm® SDA660 processor
- Octa-core 64-bit Kryo™ 260 CPU, Adreno™ 512 GPU & Hexagon™ 680 DSP
- Dimensions 25mm x 50mm
- Android™ 9 Pie

Open-Q™ 626 µSOM (Micro System on Module)

Production-ready µSOM (Micro System on Module) based on the Qualcomm® 626 processor
- Octa-Core 64-bit ARM® Cortex® A53, Adreno™ 506 GPU, Hexagon™ 546 DSP
- Dimensions 25mm x 50mm
- Android™ 9 Pie, Android™ 10, Linux®

Open-Q™ 624A SOM (System on Module)

Production-ready SOM (System on Module) based on the Qualcomm® 624 processor
- Octa-Core 64-bit ARM® Cortex® A53, Adreno™ 506 GPU, Hexagon™ 546 DSP
- Dimensions 46.5mm x 50mm
- Android™ 8 Oreo™

Open-Q™ 410 SOM (System on Module)

Production-ready SOM (System on Module) based on the Qualcomm® 410 processor
- Quad-core 64-bit ARM® Cortex®, Adreno™ 306 GPU & Hexagon™ v5 DSP
- Dimensions 26.5mm x 44mm
- Android™ 7 Nougat, Android™ 5 Lollipop, Windows 10 IoT Core, Linux®

Open-Q™ 2500 SOM (System on Module)

Production-ready SOM (System on Module) based on the Qualcomm® Snapdragon™ Wear 2500 processor
- Quad-Core ARM Cortex A7 (32-bit) at 1.094GHz
- Dimensions 15mm x 31.5mm
- Android™ 8 Oreo™ for Wearables
Open-Q™ 212A SOM (System on Module)

Production-ready SOM (System on Module) based on the Qualcomm® 212 processor
Quad-Core ARM Cortex A7 1.267GHz, Adreno™ 304 GPU, QDSP6 DSP
Dimensions 46.5mm x 50mm
Linux

Open-Q™ 2100 SOM (System on Module)

Production-ready SOM (System on Module) based on the Qualcomm® Snapdragon™ Wear 2100 processor
Quad-Core ARM Cortex A7 CPU, Adreno™ 304 GPU
Dimensions 15mm x 31.5mm
Android™ 7 Customized for Wearable products

Single Board Computers

Open-Q™ 605 Single Board Computer

Production-ready SBC based on the Qualcomm® QCS605 System-on-Chip
Octa-core Kryo™ 300 CPU, Adreno™ 615 GPU, Hexagon™ 685 DSP
Dimensions 50mm x 68mm product-ready form factor
Android™ 9 Pie, with Qualcomm® Vision Intelligence Platform

Open-Q™ 212 Single Board Computer

Qualcomm® Snapdragon™ 212 (APQ8009)
Up to 8MP over 2-lane MIPI CSI
Wi-Fi 802.11b/g/n 2.4Ghz with chip antenna and U.FL connector
Qualcomm™ Fluence™ HD with Noise Cancellation
Development Kits
Open-Q™ 845 µSOM Development Kit

- **Powered by the Open-Q™ 845 µSOM** (Micro System on Module)
- Octa-core 64-bit Kryo™ CPU, Adreno™ 630 GPU & Hexagon™ 685 DSP
- Carrier board Mini-ITX 170mm x 170mm
- Android™ 9 Pie, Linux

Open-Q™ 835 µSOM Development Kit

- **Powered by the Open-Q™ 835 µSOM** (Micro System on Module)
- Octa-core 64-bit Kryo™ CPU, Adreno™ 540 GPU & Hexagon™ DSP with Dual HVX
- Carrier board Mini-ITX 170mm x 170mm
- Android™ 8 Oreo™, Android™ 9 Pie

Open-Q™ 820Pro µSOM Development Kit

- **Powered by the Open-Q™ 820Pro µSOM** (Micro System on Module)
- Long-life, higher-speed, Qualcomm® Snapdragon™ 820E (APQ8096SG) SoC
- Quad-core 64-bit Kryo™ CPU @ 2.342 GHz, Adreno™ 530 GPU @ 652.8 MHz, Hexagon™ 680 DSP with HVX
- Carrier board 170mm X 170mm, SOM 25mm x 50mm
- Android™ 9 Pie, Debian Linux®

Open-Q™ 820 µSOM Development Kit

- **Powered by the Open-Q™ 820 µSOM** (Micro System on Module)
- Quad-core 64-bit Kryo™ CPU, Adreno™ 530 GPU & Hexagon™ 680 DSP with HVX
- Carrier board 170mm X 170mm, SOM 25mm x 50mm
- Android™ 7 Nougat, Android™ 8 Oreo™, Linux®, Android™ 9 Pie

Open-Q™ 820 Development Kit

- **Powered by the Open-Q™ 820 SOM** (System on Module)
- Quad-core 64-bit Kryo™ CPU, Adreno™ 530 GPU & Hexagon™ 680 DSP with HVX
- Carrier board 170mm X 170mm, SOM 42mm x 82mm
- Android™ 7 Nougat, Android™ 8 Oreo™, Linux®, Android™ 9 Pie
<table>
<thead>
<tr>
<th>Open-Q™ 660 µSOM Development Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powered by the Open-Q™ 660 µSOM (Micro System on Module)</td>
</tr>
<tr>
<td>Octa-core 64-bit Kryo™ 260 CPU, Adreno™ 512 GPU & Hexagon™ 680 DSP</td>
</tr>
<tr>
<td>Carrier board Mini-ITX 170mm x 170mm</td>
</tr>
<tr>
<td>Android™ 9 Pie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Open-Q™ 626 µSOM Development Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powered by the Open-Q™ 626 µSOM (Micro System on Module)</td>
</tr>
<tr>
<td>Octa-core 64-bit ARM® Cortex™ A53 2.2GHz CPU (APQ 8053Pro)</td>
</tr>
<tr>
<td>Carrier board 170mm x 170mm</td>
</tr>
<tr>
<td>Android™ 9 Pie, Android™ 10, Linux®</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Open-Q™ 624A Development Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powered by the Open-Q™ 624A SOM (System on Module)</td>
</tr>
<tr>
<td>Octa-Core 64-bit ARM® Cortex™ A53 1.8GHz</td>
</tr>
<tr>
<td>Carrier board 170mm x 115mm</td>
</tr>
<tr>
<td>Android™ 8 Oreo™</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Open-Q™ 410 Development Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powered by the Open-Q™ 410 SOM (System on Module)</td>
</tr>
<tr>
<td>Quad-core 64-bit ARM® Cortex® A53, Adreno™ 306 GPU, Hexagon™ v5 DSP</td>
</tr>
<tr>
<td>Carrier board 130mm X 130mm, SOM 44mm x 26.5mm</td>
</tr>
<tr>
<td>Android™ 7 Nougat, Android™ 5 Lollipop, Windows™ 10 IoT Core, Linux®</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Open-Q™ 2500 Development Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powered by the Open-Q™ 2500 SOM (System on Module)</td>
</tr>
<tr>
<td>Quad-Core ARM Cortex A7 (32-bit) at 1.094GHz</td>
</tr>
<tr>
<td>Carrier board 170mm x 170mm, SOM 15mm x 31.5mm</td>
</tr>
<tr>
<td>Android™ 8 for Wearables</td>
</tr>
</tbody>
</table>
Open-Q™ 212A Home Hub Development Kit

- Powered by the Open-Q™ 212A SOM (System on Module)
- Home Hub and Smart Audio Dev Platform
- Carrier board 115mm x 170mm
- Linux® Home Hub OS

Open-Q™ 2100 Development Kit

- Powered by the Open-Q™ 2100 SOM (System on Module)
- Quad-core ARM Cortex A7 up to 1.094GHz
- Carrier board nano-ITX 120mm x 120mm, SOM 15mm x 31.5mm
- Android™ 7 for Wearables
Snapdragon™ 865 Mobile Hardware Development Kit

- **Powered by the Qualcomm® Snapdragon™ SM8250 Processor**
- Octa-core 64-bit Kryo™ 585 CPU, Adreno™ 650 GPU & Hexagon™ 698 DSP
- **Main Board:** 85 mm x 100 mm
- Android™ 10

Snapdragon™ 855 Mobile Hardware Development Kit

- **Powered by the Qualcomm® Snapdragon™ 8150 Processor Board**
- Octa-core 64-bit Kryo™ 485 CPU, Adreno™ 640 GPU & Hexagon™ 690 DSP
- **Main Board:** 85 mm x 100 mm
- Android™ 9 Pie

Snapdragon™ 845 Mobile Hardware Development Kit

- **Powered by the Qualcomm® Snapdragon™ 845 Processor**
- Octa-core 64-bit Kryo™ 385 CPU, Adreno™ 630 GPU & Hexagon™ 685 DSP
- **Mini-ITX form-factor — 170mm x 170mm**
- Android™ 9 Pie

Snapdragon™ 670 Mobile Hardware Development Kit

- **Powered by the Qualcomm® Snapdragon™ 670 Processor Board**
- Octa-core 64-bit Kryo™ 360 CPU, Adreno™ 615 GPU & Hexagon™ 685 DSP
- **Mini-ITX form-factor — 170mm x 170mm**
- Android™ 8 Oreo™
The Qualcomm® Flight Pro Development Kit targets the drone and robotics development community and is based on the powerful Snapdragon 820, with its high-end imaging and signal processing capabilities. The new Qualcomm® Flight Pro board is smaller than a credit card (75x36mm) and brings together photography, video, navigation, and communication technologies on a single board.

The Flight Pro Kit includes the Flight Pro Development board, a 5V DC power supply and power cord, serial console adapter, power adapter board, and a USB to serial cable. The Flight Pro Kit does not include the motor controller, motors or propellers. If you intend to use this kit as a starting point for building a flyable drone you will need to purchase additional hardware.
Enabling the Internet of Things

Lantronix is a global provider of secure data access and management solutions for Internet of Things (IoT) and information technology (IT) assets.
Snapdragon SA8195P/SA8155P/SA6155P Automotive Development Platforms
The third-generation Snapdragon™ Automotive Development Platforms (ADP) based on Qualcomm® Snapdragon™ Automotive chipsets provide OEMs and ecosystem partners with access to QTI’s high-performance automotive infotainment, advanced driver assist platform for developing, testing, optimizing and showcasing next-generation in-vehicle infotainment solutions.

The platform is available in three versions with varying performance levels and interfaces – the top-tier SA8195P, the standard SA8155P, and the mid-tier SA6155P. All three platforms feature the Qualcomm Kryo octa-core CPU, Adreno GPU, Hexagon DSP, Spectra ISP, and Adreno VPU, along with rich connectivity through Wi-Fi 802.11ax and Bluetooth 5.1. These platforms provide optimized application development environments for rapid deployment of high performance and power efficient connected automotive infotainment offerings.

S820Am v2 Automotive Development Platform
The second-generation Snapdragon™ Automotive Development Platform (ADP) based on the Qualcomm® Snapdragon S820Am processor from Qualcomm Technologies provides OEMs and ecosystem partners with access to Qualcomm’s high-performance automotive infotainment, modem and advanced driver assist platform for developing, testing, optimizing and showcasing next-generation in-vehicle infotainment solutions.

Qualcomm® Cellular Vehicle-to-Everything (CV2X) Development Platform
Cellular vehicle-to-everything (C-V2X) serves as a foundational technology for vehicles to communicate with each other and virtually everything around them. Qualcomm® C-V2X solutions are designed to connect vehicles to nearly everything—including vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-pedestrian (V2P), and vehicle-to-cloud (V2C) communication. The C-V2X Development Platform is intended for system testing and demonstration of V2V/V2I/V2P (vehicle to vehicle, vehicle to infrastructure, vehicle to pedestrian) and V2N (vehicle to network) functionalities.

Qualcomm® Connected Car Application Reference Design (CCARD)
The Qualcomm CCARD is designed to enable OEMs and suppliers to easily and seamlessly integrate numerous advanced connected car technologies, using one framework. It is a Qualcomm reference design and software development platform for automotive telematics, featuring the MDM9250-6 System-on-Chip, and Qualcomm Snapdragon™ X16 LTE modem.

OEM customers can directly leverage the CCARD design for development of their commercial devices and the platform also enhances software development with access to peripheral debug ports, a serial console interface, and a USB debug port.
Product Development
In addition to our ready for production embedded computing solutions, Lantronix has an experienced multidisciplinary engineering team that can complete all aspects of IoT product development, including: mechanical and RF design, electrical engineering, BSP and driver development, middleware and applications, rapid prototyping, certification, and mass production. Our comprehensive capabilities allow you to engage with one company to build your product from concept through production; avoiding the challenges and finger pointing that can occur when working with multiple vendors.

Software Engineering
Intrinsyc’s software engineering team works with our technology partners at the earliest stages of new chip introduction, giving us valuable early access and knowledge of the newest high-performance technology. Our team is very experienced with embedded systems software having created countless board support packages and drivers for Android, Linux, Windows and QNX. Our driver experience includes power optimizations, radios (CDMA, GSM/GPRS, Wi-Fi, GPS, Bluetooth), FPGAs and various peripherals including USB, LCD, Touch, Camera, e-Ink, codecs and more.

Hardware Engineering
In addition to designing and developing our proprietary advanced development kits, hardware reference designs and high volume production system-on-modules (SOM), Intrinsyc’s hardware engineering team develops custom embedded computing modules and peripheral boards tailored to our client’s specifications.

Mechanical Engineering
Intrinsyc Technologies’ mechanical engineering team has extensive experience in the development and commercialization of mobile and IoT products. This design experience spans a breadth of product types, with a variety of thermal and structural engineering challenges, high density device packaging, as well as design for ruggedized products. The mechanical design and manufacturing experience can support proof of concept/prototype projects and low to high volume fabrication and production processes.