
 

 

 

 

 

 

 

Application Note 
 

 

CAN Applications with AVL Devices 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part Number APP-0026 
Revision A November 2019 



CAN Applications with AVL Devices  2 

Intellectual Property 

© 2019 Lantronix, Inc.  All rights reserved. No part of the contents of this publication may 
be transmitted or reproduced in any form or by any means without the written permission of 
Lantronix.  

Lantronix is a registered trademark of Lantronix, Inc. in the United States and other 
countries.   

Patented: www.lantronix.com/legal/patents/; additional patents pending. 

All trademarks and trade names are the property of their respective holders.  

Contacts 

Lantronix, Inc. 
7535 Irvine Center Drive, Suite 100 
Irvine, CA 92618, USA 
Toll Free: 800-526-8766 
Phone:  949-453-3990 
Fax:  949-453-3995 

Technical Support 
Online:  www.lantronix.com/support 

Sales Offices 
For a current list of our domestic and international sales offices, go to the Lantronix web 
site at www.lantronix.com/about/contact 

Disclaimer 

All information contained herein is provided “AS IS.”  Lantronix undertakes no obligation to 
update the information in this publication.  Lantronix does not make, and specifically 
disclaims, all warranties of any kind (express, implied or otherwise) regarding title, non-
infringement, fitness, quality, accuracy, completeness, usefulness, suitability or 
performance of the information provided herein. Lantronix shall have no liability whatsoever 
to any user for any damages, losses and causes of action (whether in contract or in tort or 
otherwise) in connection with the user’s access or usage of any of the information or 
content contained herein.  The information and specifications contained in this document 
are subject to change without notice. 

  

http://www.lantronix.com/legal/patents/
http://www.lantronix.com/support
http://www.lantronix.com/about/contact


CAN Applications with AVL Devices  3 

Revision History 

Date Rev. Comments 

September 2008 1.0.0 Initial version. 

June 2008 1.0.1 Corrected color codes of “Vehicle installation cable" - see table in 
page 8 

January 2009 1.0.2 Improved Figure 1 - typical High & Low signals on CANBus. 

Added more information about the CAN Bus throughout this 
document 

October 2014 1.0.3 Added hint in chapter 1.2 

November 2019 A Initial Lantronix document. Added Lantronix document part 
number, logo, contact information, and links. 

For the latest revision of this product document, please check our online documentation at 
www.lantronix.com/support/documentation. 

  

http://www.lantronix.com/support/documentation.html


CAN Applications with AVL Devices  4 

Table of Contents 

1: About This Document 5 

Introduction ____________________________________________________________ 5 

How to Read the Data out of a CAN Bus _____________________________________ 7 
  

  



CAN Applications with AVL Devices  5 

1: About This Document 
This application note provides information how to connect your device with CAN Bus option to an 

external CAN bus and read the data on a CAN bus. The CAN bus can be a vehicle CAN bus on a car or 

truck. STEPPIII device is used as an example in this application note. 

Main feature of the STEPPIII and FOX with CAN bus option is that they directly store received 

messages with selected CAN message identifiers into a message buffer. The user provides a list of 

CAN message identifiers that should be received by the CAN interface. The STEPPIII or FOX device 

automatically scans every incoming CAN message from the CAN bus and when there is an identifier 

match, the message is copied into the associated receive buffer. The user provides then the position 

of bits and bytes to be read out of the 8-byte data the identifier provides for finding out states of 

specific components  in-vehicle (e.g. when the doors are locked or opened).The read out values are 

then stored into different storage slots and when a storage slot  changes its value the corresponding 

event is occurred. With the help of such events you are able to sent these values to a TCP server for 

evaluating. Starting from the software revision 2.6.1, the STEPPIII and FOX devices have a limit of 25 

such storage slots. That means STEPPIII and FOX can catch up to 25 messages identifiers from the 

CAN bus stream. 

Introduction 

Controller Area Network (CAN) was initially created for automotive applications. The goal was to 

make automobiles more reliable and safe. The CAN bus allows multiple devices to be linked together 

on the same bus. A typical vehicle architecture is illustrated in figure below. 

 

The diagnostic port gateway provides the link between the diagnostic connector and the vehicle 

networks. In this example, two internal networks are shown, one (in red) associated with safety 

critical modules such as engine management and the other (in blue) associated with lower priority 

modules such as body control. 

  



CAN Applications with AVL Devices  6 

The aim of this application note is to explain some of the basics of CAN and show how to configure 

your STEPPIII/FOX to read out such specific information on the CAN bus. The CAN bus consists of 

two-wire data line to which all vehicle components are connected. CAN implements a serial data 

transmission using the two bus signal levels CAN_High and CAN_Low. CAN, like most modern 

networks, is serial based. This means that the information travels along the CAN Bus one bit at a 

time. On the  CAN_High a redundant signal is transferred which is inverted compared to CAN_Low 

line (see figure below). When CAN_High goes high, in the same time, CAN_Low goes low, in the 

same proportion. 

 

Figure 1: Typical signal of High & Low speed CAN. 

The figure above shows the physical (dominant and recessive) levels with a CAN High and Low 

speed Transceivers. It is important to know that the voltage levels from each of the two CAN 

lines to ground or to the vehicle chassis are not the important ones.  Important to CAN is the 

voltage between the two lines or their difference voltage. The recessive bus level (logic "1") is 

characterized by a difference voltage of 0 V. Both communication lines are on the potential 

voltage of 2.5 V. With the dominant bus level (logic "0") the CAN_H line accepts a potential 

voltage of 3.5 V and the CAN_L line of 1.5 V. The difference voltage is 2 V. 

Each automotive manufacturer has created his own CAN Protocol. A CAN bus protocol consists of an 

identifier and up to eight data bytes. The protocol developed by a manufacturer defines what data 

signals they add to an identifier and how the signal data is organised within the data bytes for each 

CAN message. The CAN bus connection point on your vehicle can be either behind the radio or 

under the dashboard. For more information, how to get the identifiers on your vehicle CAN bus and 

how the data is organised in it as well as the CAN connection point please contact your vehicle 

manufacturer or your local vendor. 

There are two different CAN messages: the standard and the extended message. The only difference 

between them is that the standard message supports an 11-bits identifier, and the extended one 

supports a 29-bits identifier, made up of the 11-bit identifier and an 18-bit extension identifier. The 

distinction between CAN standard and CAN extended is made by using the IDE bit, which is 

transmitted as dominant in case of an 11-bit message, and transmitted as recessive in case of a 29-

bit message. A CAN that supports extended messages are also able to send and receive messages in 

CAN standard. 



CAN Applications with AVL Devices  7 

The structure of both 11-bits and 29-bits messages is given below: 
11 Bit Identifier:  

29 Bit Identifier: 
… b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18               b17 b16 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 … 

                                     ↑ ↑ 

 SRR -Substitute RTR bit for 29 bit ID  IDE - Identifier Extension (dominant =11 bit ID, recessive = 29 bit ID) 

A simplified structure of a CAN bus message is shown in table that follow with example identifier 
and data. In this example, the identifier is a 11-bits identifier with a value of hexadecimal 0x1AC. For 
example, the 4-th and 5-th data bytes correspond to engine RPM (Revolutions Per Minute), while 
the 1-th and 2-th data bytes correspond to door lock etc. 

 Identifier segment Data segment 

  0 to 7 bytes 

Example 11 bits 0x1AC F3 14 1F 99 75 F1 F2 F5 

Example 29 bits 0x0FC00860 E1 23 AF 2 55 BC C1 A1 

For more detailed information about the CAN Bus, visit the website: 
http://en.wikipedia.org/wiki/Controller_Area_Network. 

How to Read the Data out of a CAN Bus 

For the evaluation of the CAN bus data, a FOX or STEPPIII device with the CAN bus option is required. 

These devices can be supplied (upon request) with a CAN-bus interface that supports either High-

Speed CAN-Bus or Low-Speed CAN-Bus. 

The first option Low-Speed CAN-Bus controller CAN1 (Type TJA1054A) inside the FOX or STEPPIII 

device is compatible to: 

✓ ISO 11898-3 (CAN fault-tolerant (low-speed)), 
✓ Two transmission lines (total termination=100 Ohm across the CAN_H and CAN_L 

wire - should be measured* at the end of the CAN bus lines in vehicle), 

✓ SAE J2411 Single-wire CAN (SWC),  

✓ Supporting a baudrate of up to 125 Kbit/s,  

✓ for car applications. 

* The vehicle key must be off to accurately measure the resistance of the CAN bus. 

  

… b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 … 

http://en.wikipedia.org/wiki/Controller_Area_Network


CAN Applications with AVL Devices  8 

The second option High-Speed CAN-Bus controller CANH (Type TLE6250) inside the FOX or STEPPIII 

device is compatible to: 

✓ ISO 11898-2 (high-speed) 

✓ Two wire differencial bus 

✓ The CAN bus must be terminated at both ends by a 120-ohm resistor to prevent signal  

reflections. Use an ohm meter to check wiring on the vehicle side. With the power off, verify 

60-ohm across CAN_H and CAN_L (if only one resistor is installed or no resistor is installed 

you will read 120-ohm or 0-ohm instead of 60-ohm), 

✓ Supporting a baudrate of up to 1Mbit/s, 

✓ for truck applications (CAN Gateway). 

Hint: The first option (Low-Speed CAN-Bus controller CAN1) can also be used for one wire 

applications with up to 125 kBit/s bus speed and the second option (High-Speed CAN-Bus 

controller CANH) is designed for use in dual wire applications with up to 1Mbit/s bus speed. 

Each of AVL devices provides two CAN bus signal pins CAN_High and CAN_Low. A cable shipped with 

the device can be used to interface your device with the CAN bus of your vehicle. The polarity of the 

CAN_High and CAN_Low lines must be observed when connecting your FOX/STEPPIII device to the 

two-wire CAN lines of your vehicle. Additionally, a manufacture special connector at the end of the 

shipped cable is required for connecting your FOX/STEPPIII to the CAN bus interface on your vehicle. 

Please contact your local vendor to get more information. 

The CAN interface lines for STEPPIII and FOX: 

STEPPIII 

 DI0 (Pin 10 on the 16pin connector) as CAN_H line 

 DI1 (PIN 12 on the 16pin connector) as CAN_L line 

FOX uses on the end of the 8-pin cable: 

 I/O2 (Pin 5 - Yellow - on 8pin connector of cable) as CAN_L line 

 I/O3 (Pin 6 - Green - on 8pin connector of cable) as CAN_H line 

 

The shipped 16-wires cable called “Vehicle installation cable” (for STEPPIII device only, while the 

FOX device provides an 8pin connector at the end of the external cable - for the pinout of this cable, 

refer to the "FOX_EvalKit_Getting_Started.pdf"), which can be used for in-vehicle installation, has 

different color codes. 

Table below lists the wire colors and their meaning of this cable. 

 

Figure 2: Vehicle mounting cable 



CAN Applications with AVL Devices  9 

To use this cable, first strip off about 2 cm of the outer insulation the end of the wires your 

application uses, then connect the end with connector to the STEPPIII device and finally, connect the 

other stripped ends DI0 (grey) to the CAN_High and DI1 (white)  to the CAN_Low of the the CAN bus 

on your vehicle, and when you are sure the CAN connection is properly made, apply power to the 

device by connecting the GND-pin first and then VCC-pin. 

The following table lists the color codes on the Vehicle mounting cable: 

WIRE COLOR NAME Meaning 

Orange - White VBO Do not use , leave disconnected. 

Orange IN0 Analog / digital Input (default = analog) 

Green - White GND - 

Lilac IN1 Analog / digital Input (default = analog) 

Brown - White OUT0 Output 

Black IN2 Analog / digital Input (default = digital) 

Yellow - White OUT1 Output 

Yellow IN3 Analog / digital Input (default = digital) 

Red - White OUT2 Output 

Grey DI0 CAN_H (dominant HIGH) 

Black - White OUT3 Output 

White DI1 CAN_Low (dominant LOW) 

Blue IGN Digital input 

Green DiWu Digital input 

Red VCC (2A fuse-protected) Input voltage (+10.8...35.0V DC) 

Brown GND - 

In order to get specific information from a CAN bus, e.g. RPM information, as trigger or control 

signal, this information must be extracted from the CAN bus data stream using CAN message 

identifiers. 

Using PFAL commands provided for CAN applications, the user defines the CAN communication 

baudrate of the CAN Bus in the vehicle and provides a list of CAN message identifiers (up to 25 

messages identifiers currently available) that should be received by the CAN interface. When an 

identifier match is detected, the message is copied into the associated receive buffer. To find out 

states that an identifier provides (e.g. when the doors are locked or opened), the user have to 

provide the position of bits and bytes to be read out of the 8-byte data. The read out values are then 

automatically stored into different storage slots inside the device and when a storage slot changes 

its value the corresponding event is occurred. These events can be used to send out these values to 

a TCP server for further evaluation. On the remote server the received data may be graphically 

displayed to show e.g. vehicle diagnostics, Ignition, Door locks, Windows state etc. 

In the table below are given some configuration settings to demonstrate how your STEPPIII or FOX 

device can be configured to get out information from a Low speed CAN bus and to send it to a 

remote server. For High speed CAN application, just replace the entry "std" in the 



CAN Applications with AVL Devices  10 

"$PFAL,Sys.CAN.Msg.Add,std,xxx" and  "$PFAL,Sys.Can.Var.Add,0,number,event,std,xxx,x,x,x,x,xxx" 

by "ext". 

How to add the required message identifiers, read out their data and send values to a remote server 
when they change? 

Command syntax $PFAL,Sys.Can.Enable,<baudrate>,<mode> 

Description STEPPIII and FOX devices use the command above to activate the CAN 
interface. CAN interface will be enabled after rebooting the system. 

Command syntax $PFAL,Sys.CAN.Msg.Add,<type>,<identifier>[,<mask>] 

Description STEPPIII and FOX devices use the command above to add a CAN message 
identifier into the buffer that should be received by the CAN interface. The 
CAN-Bus controller built-in the device automatically scans every incoming 
CAN message from the bus and when there is an identifier match, the 
message is copied into the associated receive buffer. To read the data stored 
in this buffer identifier use the command "$PFAL,Sys.CAN.Var.Add...".The 
<mask> entry is optional and can be used when you don't know exactly the 
message identifier, otherwise leave it empty (if used, please refer to the 
examples "How to use <mask> in this command"). In all examples in this 
table the <mask> entry is not used. 

Hint: If you want to read 10 different message identifiers (e.g. door lock, 
gear direction, vehicle speed, RPM etc.) you have to execute this command 
10 times with corresponding identifier. If a message identifier provides 2 
different information (e.g. door lock, door state) and you need both 
information, then first execute this command just one time and then 
execute the command "$PFAL,Sys.CAN.Var.Add..." 2 times by defining the 
same <msg_identifier> and different byte and bit order (see example with 
"ID=39F" below). 

How to use <mask> in this command: 

Example 1 - for standard CAN: 

- Let's assume that following message identifiers are on the CAN Bus 
data steam: 

A: id=19A; B: id=290; C: id=39E; D: d=89F;  

E: id=6F9; F: d=19F; G: d=392; 

- The PFAL command below with "id=39B" and "mask=FFFFFFF0"  

$PFAL,Sys.CAN.Msg.Add,std,39B,FFFFFFF0 // receives all message 
identifiers on the CAN bus (in this example all 3-bytes 
messages) starting with ID "39" (i.e. 390 to 39F) and 
filters out all other messages. 

- messages C and G would be received, because they start with "39" 
and the last 4 bits are don't care,  

- all other messages A, B, D, E and F would be filtered out because 
they don't start with "39" (the first 2 digits in these message IDs do 
not match the required '39'). 

Example 2 - for extended CAN: 

- The PFAL command below with "id=00FEF1" and "mask=FFFFFF00" 

$PFAL,Sys.CAN.Msg.Add,ext,00FEF1,FFFFFF00 // receives all message 
identifiers on the CAN bus (in this example all 6-bytes 
messages) starting with "00FE" (i.e. "00FE00" to 
"00FEFF") and filters out all other messages. 



CAN Applications with AVL Devices  11 

Command syntax $PFAL,Sys.CAN.Var.Add,<variable_slot>,<variable_type>,<notification>,<ms
g_type>,<msg_identifier>,<start_byte>,<start_bit>,<stop_byte>,<stop_bit>,<
byte_order> 

Description STEPPIII and FOX devices use the command above to read out specific data 
attached to a CAN message identifier (e.g. 211 provides information about 
the door lock). The <byte_order> defines how the data bytes should be read, 
MSB (the most significant byte) is always on the left and LSB (the least 
significant byte) on the right. 

Let's see an example how to configure your device to read the data out of a standard CAN bus : 

Let's suppose you want to read the data attached to the following identifiers in a standard CAN 
message (11-bits) and then send this data out to a remote server when their value changes: 

Identifiers Data added to it 

211 and e.g. byte 0 (MSB) provides information about the door lock. 

39F and e.g. byte 0 (MSB) provides information about the gear direction. 

39F and e.g. bytes 1 and 2 (LSB) provide information about the vehicle speed. 

15B and e.g. bytes 1 and 2 (LSB) provide information about the RPM. 

479 and e.g. bytes 6 and 5 (MSB) provide information about the door state. 

65A and e.g. bytes 1, 2 and 3 (LSB) provide information about the milage. 

Steps to be done: 

1) - First, activate the CAN interface and define the baudrate the CAN bus uses (e.g. 
$PFAL,Sys.Can.Enable,100K,RO)  

// by default the baudrate is set to 100K (for Low-Speed CAN bus option) and 250K (for High Speed 
CAN Bus option). 

2) - Thereafter, add a message ID into the associated buffer (e.g. 
$PFAL,Sys.CAN.Msg.Add,std,211) //std=standard CAN;  

ext=extended CAN; 

3) - Read out the data attached to the message identifier "211" by specifying bits, bytes and byte 
order containing the required data (e.g. 
$PFAL,Sys.Can.Var.Add,0,number,event,std,211,0,0,0,7,MSB) 

4) - Finally, configure an alarm that sends out the contents of the Slot0 via TCP when its contents 
changes (door lock changes its value) (e.g. 
$PFAL,CNF.Set,AL45=SYS.Can.e0:TCP.Client.Send,8,"<sfal.event.text text='doorlock change to 
&(CAN0)'>") 

5) - Follow the steps 2, 3 and 4 to add other message identifiers, read out their data and send out 
these values out when they change. 

For more information about the PFAL commands added in this application note, refer to the 
manual "steppIII_fox_bolero_lt_PFAL_Configuration_Command_Set.pdf". 

Below you will find some examples how to read the data added to some message identifiers 
using PFAL commands. The red marked bits in the examples below are the bits which will be 
read from the data that the message identifier provides. 

  



CAN Applications with AVL Devices  12 

How to add the required message identifiers, read out their data and send values to a remote server 
when they change? 

$PFAL,Sys.CAN.Msg.Add,std,211 

$PFAL,Sys.Can.Var.Add,0,number,event,std,211,0,0,0,7,MSB 

First command adds a standard message identifier "211" into the associated receive buffer and 
second command stores the value (e.g. door lock state) into the slot 0 read out of byte 0 of the 
8-bytes datastream starting from the MSB (most significant byte). Whenever the value in the slot 
0 changes, the corresponding event is occurred. This event enables you to capture and sent out 
these values via TCP. 

Some automotive manufacturers organise their signal data within the data bytes to be read in 
different directions. That's way, the entries MSB or LSB at the end of the command 
"Sys.Can.Var.Add" defines which byte in the 8-bytes datastream should be read first. Therefore, 
if you set MSB, the data will be read from left to right, while if you set LSB, the data will be read 
from right to left as represented in table below. If the reading direction does not match with the 
direction given by the automotive manufacturer you will get a wrong value which does not 
correspond to the value that you will have to read. 

This example is represented in table form below. 
 

Identifier Data 

11 bit 0 to 7 bytes (represented in bitwise) 

 
byte 7  byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0 (LSB) 

(MSB→) byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 

Example 211 11110011 10100 11111 10011001 1110101  11110001  11110010  11110101  

(→  ) The arrow direction indicates reading direction of bytes. 

$PFAL,Sys.CAN.Msg.Add,std,39F  
$PFAL,Sys.Can.Var.Add,1,number,event,std,39F,0,0,0,7,MSB 

First command adds a standard message identifier "39F" into the associated receive buffer and 
second command stores the value (e.g. (e.g. gear direction) into the slot 1 read out of byte 0 of 
the 8-bytes datastream starting from the MSB (most significant byte).  

This example is represented in table form below. 
 

Identifier Data 

11 bit 0 to 7 bytes (represented in bitwise) 

 
byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0 (LSB ) 

(MSB→) byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 

Example 39F 010111 111101 11111 1011101 10111  1001110  1001100  10100011  

(→  ) The arrow direction indicates reading direction of bytes. 

  



CAN Applications with AVL Devices  13 

$PFAL,Sys.Can.Var.Add,2,number,state,std,39F,1,0,2,7,LSB 

This command stores the value (e.g. Speed values) into the slot 2 read out of bytes 1 and 2 of the 
8-bytes datastream starting from the LSB (last significant byte).  

This example is represented in table form below. 
 

Identifier Data 

11 bit 0 to 7 bytes (represented in bitwise) 

 
byte 7  byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0 (LSB) 

 
(MSB→) byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7  

Example 39F 10010111 11101 10001 11011101 1010111  10010111  10011110  10101011  

(→  ) The arrow direction indicates reading direction of bytes. 

$PFAL,Sys.CAN.Msg.Add,std,15B  
$PFAL,Sys.Can.Var.Add,3,number,event,std,15B,1,4,2,3,LSB 

First command adds a standard message identifier "15B" into the associated receive buffer and 
second command stores the value (e.g. RPM) into the slot 3 read out of bits 4 - 7 of byte 1 and 
bits 0 - 3 of byte 2 of the 8-bytes datastream starting from the LSB (last significant byte). This 
example is represented in table form below. 

 
Identifier Data 

11 bit 0 to 7 bytes (represented in bitwise) 

 
byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0 

(LSB) 

 
(MSB→)byte 0  byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7  

Example 15B  10010111 11101 10001 11011101 1010111  10010111  10011110  10101011  

(→  ) The arrow direction indicates reading direction of bytes. 

How to add the required message identifiers, read out their data and send values to a remote server 
when they change? 

$PFAL,Sys.CAN.Msg.Add,std,479  
$PFAL,Sys.Can.Var.Add,4,number,event,std,479,1,3,2,2,MSB 

First command adds a standard message identifier "479" into the associated receive buffer and 
second command stores the value (e.g. door state) into the slot 3 read out of bits 3 - 7 of byte 1 
and bits 0 - 2 of byte 2 of the 8-bytes datastream starting from the MSB (most significant byte). 
In this example bits of bytes 6 and 5 will be read. 

This example is represented in table form below. 
 

Identifier Data 

11 bit 0 to 7 bytes (represented in bitwise) 

 
byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0 (LSB) 

 
(MSB→) byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 

Example 479 10100111 11011100 10111 11101 1110001  10111111  11111110  11100001  

(→  ) The arrow direction indicates reading direction of bytes. 



CAN Applications with AVL Devices  14 

$PFAL,Sys.CAN.Msg.Add,std,65A  
$PFAL,Sys.Can.Var.Add,5,number,state,std,65A,1,0,3,7,LSB 

First command adds a standard message identifier "65A" into the associated receive buffer and 
second command stores the value (e.g. milage) into the slot 3 read out of bytes 1, 2 and 3 of the 
8-bytes datastream starting from the LSB (last significant byte).  

This example is represented in table form below. 
 

Identifier Data 

11 bit 0 to 7 bytes (represented in bitwise) 

 
byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0 (LSB) 

 
(MSB→) byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7  

Example 65A 10010111 11101 10001 11011101 1010111  10010111  10011110  10101011  

(→  ) The arrow direction indicates reading direction of bytes. 

$PFAL,CNF.Set,AL45=SYS.Can.e0:TCP.Client.Send,8,"<sfal.event.text text='doorlock changed to 
&(CAN0)'>" 

 

$PFAL,CNF.Set,AL46=SYS.Can.e4:TCP.Client.Send,8,"<sfal.event.text text='doorstate changed to 
&(CAN4)'>" 

 

$PFAL,CNF.Set,AL47=SYS.Can.e1:TCP.Client.Send,8,"<sfal.event.text text='gearstate changed to 
&(CAN1)'>" 

Alarm 45 reports an RMC protocol and the CAN value from the variable slot 0 to the TCP server 
whenever this value changes. 

Alarm 46 reports an RMC protocol and the CAN value from the variable slot 4 to the TCP server 
whenever this value changes. 

Alarm 47 reports an RMC protocol and the CAN value from the variable slot 1 to the TCP server 
whenever this value changes. 

$PFAL,CNF.Set,AL48=SYS.Can.e3>1&SYS.TRIGGER.s_TRIP=low:SYS.TRIGGER_TRIP=high&TCP.Cli
ent.Send,8,"<sfal.event.tripstart>" 

 
$PFAL,CNF.Set,AL49=SYS.Can.e3=0&SYS.TRIGGER.s_TRIP=high:SYS.TRIGGER_TRIP=low&TCP.Cli
ent.Send,8,"<sfal.event.tripstop dist='&(NavDist)'>"&TCP.Client.Send,8,"<sfal.event.text 
text='milage = &(CAN5) '>" 

 
$PFAL,CNF.Set,AL50=SYS.TIMER.e_1SEC:MSG.Send.Serial,0,"SERIALCAN Speed=&(CAN2) kmh 
RPM=&(CAN3) u/min tacho=&(CAN5) km"  

Alarm 48 reports the CAN value from the variable slot 3 to the TCP server whenever this value is 
greater than 1 and trigger s_TRIP is low. 

Alarm 49 reports the CAN value from the variable slot 3 to the TCP server whenever this value is 
0 and trigger s_TRIP is high. 

Alarm 50 reports the CAN value from the variable slots 2 and 3 to the serial line every 1 second. 

<sfal.event...> commands are supported only from our D2Sphere server. 

  



CAN Applications with AVL Devices  15 

doorstate changed to 0 
doorstate changed to 1 
gearstate changed to 0 
gearstate changed to 2 
gearstate changed to 1 
doorstate changed to 8 
doorstate changed to 9 
doorstate changed to 2 
doorstate changed to 5 
doorstate changed to 3 
doorstate changed to 4 
doorstate changed to 60 
doorlock changed to 8 
milage = 46940 

How to add the required message identifiers, read out their data and send values to a remote server 
when they change? 

milage = 46957 
milage = 47030 
milage = 47046 
milage = 47056 
milage = 47065 
milage = 47070 

The values above (doorlock, door state and milage) are taken out of the D2Sphere server 
database the STEPPIII device has reported to server, based on the alarm configuration of AL45, 
AL46 and AL49. 

 


