Application Note:

Out-of-Band Management (OOBM)
Using an LTE Cellular Gateway for Fail-over/Fail-back

This app note applies to the following Lantronix Products:

 SLC 8000: Advanced Console Manager
 SLB: Branch Office Manager

Jeff Blyther
Sr. Field Application Engineer
jblyther@lantronix.com
Out-of-Band Management (OOBM) Using an Ethernet to Cellular Gateway

Overview

The SLC 8000 Advance Console Manager (SLC 8000) and the SLB Branch Office Manager (SLB) support Out-of-Band Management (OOBM) with several different options. This document specifically focuses on using the Sierra Wireless Airlink ES450 LTE cellular gateway (ES450 Gateway) as the Lantronix preferred option for LTE cellular support as a secondary channel of communication.

All the examples in this document reference the UI of the SLC 8000 but, please understand the same functionality and UI examples are also found in the SLB.

The SLC 8000 and the SLB have two network interfaces: Ethernet Port 1 (Eth1) and Ethernet Port 2 (Eth2). The concept is when the primary channel of communication to the SLC 8000/SLB over Eth1 is lost, a secondary channel of communication must be made available in order to enable Network Administrators to access their infrastructure equipment connected to the SLC 8000/SLB. It is the expectation of Network Administrators that the SLC 8000/SLB will ‘fail-over’ to a secondary channel of communication seamlessly and automatically. They also expect ‘fail-back’ to occur when the production network is back online.

The SLC 8000/SLB supports Fail-over/Fail-back between the two network interfaces (RJ45 Ethernet or SFP). This implementation allows the SLC 8000/SLB to fail-over from (Eth1) to (Eth2) when the SLC 8000 detects that Eth1 is no longer available. Since the ES450 Gateway is an Ethernet to cellular gateway, it is connected to Eth2 so when the fail-over occurs the SLC 8000/SLB will then be accessible over the cellular network. The Network Administrator is now able connect to the SLC 8000/SLB and all the attached equipment to begin the process of troubleshooting why the production network went down.

When the network on Eth1 is available again, the SLC 8000/SLB fails-back to Eth1. The primary channel of communication has been restored.

This application note was written and tested using the SLC8000 with firmware v7.8.0.0.R13. For the best results, it is recommended that you upgrade/use this version.

Setup

Sierra Wireless Airlink ES450

The ES450 Gateway supports 3G/4G/LTE/CDMA/GSM and is an ideal fail-over device for the SLC 8000 and the SLB. It is completely integrated with the SLC 8000/SLB therefore setup is minimal. To setup the ES450 Gateway, connect the Ethernet interface of the Gateway to the Eth2 port on the SLC 8000/SLB with a CAT5e/CAT6 cable as shown. Then power up the ES450 Gateway by plugging in the power connector. The ES450 Gateway has a default static IP address assigned as 192.168.13.31.

![Plug ES450 CAT5e/CAT6 cable in here](image)

If you are using an SLC that supports SFP, you may need to use a hub/switch between the ES450 (10/100Mb) and the SFP interface (1Gb) to accommodate the different link speeds.
SLC 8000

Firmware Version 7.6.0.0 or higher is required to support the Fail-over/Fail-back cellular parameters that support the ES450 Gateway unit. It is recommended that you upgrade to the latest firmware version to get the best results. To verify the firmware version of the SLC, click on the Maintenance tab and then Firmware /Config. The firmware version is shown under the heading SLC Firmware. In this case the firmware is version 7.8.0.0.R13.

Please note that the SLC has 2 boot banks so it can run 2 different versions of firmware. Make sure that the Boot Bank that contains the firmware image of v7.6 or higher is current and the running firmware.

Configuration

To configure the Fail-over/Fail-back parameters in the SLC 8000, click the **Network** tab and select **Network Settings**.

For Fail-over/Fail-back to work reliably, static IP addressing on both Eth1 and Eth2 is highly recommended. Keep in mind, in a true OOBM scenario, depending on a long-lease DHCP address is risky.
For the Eth1 settings, click the radio button for Specify, then enter the static IP address and subnet mask. For the Eth2 settings, click the radio button for Specify. Since the ES450 Gateway has an IP address of 192.168.13.31, for the Eth2 settings enter an IP of 192.168.13.xxx and mask of 255.255.255.0. In this example Eth2 is set to a static IP address of **192.168.13.33**.

Next, enter at least one IP address for the DNS server settings. A good IP address to use is 8.8.8.8 which is the Google DNS server. In this example, we are also using the local gateway DNS server.

To trigger the failover process, the SLC will ping an IP address on the other side of the ETH1 default gateway as a way to verify network connectivity. If the SLC receives the configured number of failed pings, then this will trigger or activate the fail-over process. You can configure a timer for the delay between pings. You can also configure the number of failed pings required before failover occurs.

There are 2 scenarios that you can use. One is the production configuration where the IP address to ping will want to be on the public internet (Public DNS Server, 1.1.1.1 is a good option) on the ETH1 interface. Here is a possible network topology:
The second scenario is for testing the failover feature. The production configuration topology does not easily allow for failover to be tested. To simulate a failover with the production configuration, most of the options (pull network cable or power down the router) will cause the local subnet to lose connectivity on the ETH1 interface network. By using a local host as the **IP Address to Ping**, you can easily simulate a down network connection (by powering down the local host) as well as have continued network access to the SLC8000 WEB manager (to monitor fail over) on the ETH1 interface. Here is a possible network topology:
Follow the following steps to configure the failover feature:

1. Enter the IP address of the default gateway of Eth1 in the Default field. This has to be the local subnet gateway.
2. Fill in the Fail-over Gateway IP Address field with IP address of the ES450 Gateway (192.168.13.31).
3. Enter the IP address in the IP Address to Ping field. Remember, this IP address is networked to the Eth1 interface so ensure that Ethernet Port for Ping radio button is set to Eth1.

Next, in the Fail-over Device drop down box -> select Sierra Wireless ES450.

In the APN of the Mobile Carrier field, enter the APN address supplied by the mobile carrier. Please contact your Lantronix Sales Manager if you would like us to provide an Evaluation SIM from AT&T during your proof-of-concept testing.
VPN Connection

When using the LTE cellular gateway solution as a secondary channel of communication a VPN tunnel is required. The SLC 8000/SLB is a VPN client and with the ES450 Gateway acting as a gateway from Ethernet to cellular, the SLC 8000 can VPN through the ES450 Gateway to an awaiting VPN server.

To configure the VPN setup in the SLC 8000/SLB, click the Network tab then click VPN. Click Eth2 to ensure the VPN tunnel uses the ES450 Gateway. Since the SLC 8000/SLB is a VPN client, configure the remaining parameters in accordance with the VPN server.

When complete, the Current Tunnel Status will change from Down to Up.
Fail Over Results

When the **IP Address to Ping** no longer responds, Fail-over is triggered. There is a notification on the **Network Settings** page.

<table>
<thead>
<tr>
<th>Gateway</th>
<th>Fail-Over Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default: 192.168.1.1</td>
<td>IP Address to Ping: 192.168.13.31</td>
</tr>
<tr>
<td>DHCP-Acquired: none</td>
<td>Ethernet Port for Ping: @Eth1</td>
</tr>
<tr>
<td>Precedence: @ DHCP-Acquired</td>
<td>Delay between Pings: 3</td>
</tr>
<tr>
<td>IPv6 Default:</td>
<td>Number of Failed Pings: 2</td>
</tr>
</tbody>
</table>

Since Eth2 is now available, the VPN tunnel opens.

The **Fail Over Cellular Gateway Configuration**

- **Failover Device**: Sierra Wireless E5450
- **APN of Mobile Carrier**: m2m.com.attz
- **Admin Login**: user
- **Admin Password**: ******
- **Change Admin Password**:

Since Eth2 is now available, the VPN tunnel opens.

<table>
<thead>
<tr>
<th>Enable VPN Tunnel:</th>
<th>Current Tunnel Status:</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔️</td>
<td>**"Failover Test": 11.0.0.10/32 === 192.168.0.30<192.168.0.30[@techsupport] --- 192.168.0.1 ... 70.168.148.0<70.168.148.0 --- 0.0.0.0/0; unrouted; create owner: #58 **"Failover Test": 11.0.0.10/32 === 192.168.0.30[@] ... 192.168.0.1 ... 70.168.148.0 --- 192.168.0.0/16; unrouted; create owner: #58 **"Failover Test": 11.0.0.10/32 === 192.168.0.30[@] ... 192.168.0.1 ... 70.168.148.0 --- 0.0.0.0/16; unrouted; create owner: #58 **"Failover Test": 11.0.0.10/32 === 192.168.0.30[@] ... 192.168.0.1 ... 70.168.148.0 --- 192.168.0.34/24; unrouted; create owner: #58 PSK + ENCRYPT + TUNNEL + IPS + UP + XAUTH + AGGRESSIVE + KEVZALLOW + SAFETRACK + I/KOD + rKOD; prio: 24;32; interface: eth1; kind:CK_PERMANENT</td>
</tr>
<tr>
<td>Name: FailoverTest</td>
<td>View Detailed Status ></td>
</tr>
<tr>
<td>Ethernet Port:</td>
<td>View VPN Logs ></td>
</tr>
<tr>
<td>□ 1</td>
<td>2</td>
</tr>
<tr>
<td>Remote Host:</td>
<td>70.168.148.9</td>
</tr>
<tr>
<td>Remote Ip:</td>
<td></td>
</tr>
<tr>
<td>Remote Hop/Router:</td>
<td></td>
</tr>
<tr>
<td>Remote Subnet(s):</td>
<td></td>
</tr>
<tr>
<td>Local Ip:</td>
<td>techsupport</td>
</tr>
</tbody>
</table>

You will now be able to reach the SLC 8000/SLB and all of the devices attached through the VPN tunnel.

The SLC will continue to check network availability on ETH1 by continuing to ping the **IP Address to Ping**. When there is a response from the ping, this will trigger the SLC 8000/SLB to **fail-back** to Eth1.

The **>>> Currently using fail-over gateway <<<** notification will disappear, and the VPN tunnel will come down. The production network connection has been restored.
Additional Information

It you would like to check the status of the ES450 Gateway at any time, click the Fail-Over Cellular Gateway Status hyperlink below the failed over settings.

This will show the following status information:
CLI Command Reference

For the sake of clearly understanding the process, screenshots from the SLC 8000 WEB Manager (GUI) were used in this App Note. If you intend to configure the above parameters using the SLC 8000/SLB CLI, see the Command Reference section in the User Guide.

If you require additional assistance finding necessary commands used for configuring the Failover/Failback process, please email the Lantronix Technical Support team - http://ltfaq.custhelp.com/app/utils/login_form/redirect/ask

Troubleshooting

If you are experiencing trouble, it is a good idea to get the SLC log files. There is a log for the Fail-Over Cellular Gateway Status on the network page. This is a hyperlink so clicking on it will produce a log with Diagnostic data. Also, under the maintenance tab, click on the system log menu for more details.

<table>
<thead>
<tr>
<th>Error</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Network communication on Eth2</td>
<td>Click the Fail-Over Cellular Gateway Status hyperlink and review the log. Is there a WAN IP Address? Review "WAN Network state detail"</td>
</tr>
<tr>
<td>Failed to Configure Gateway</td>
<td>1. Check for link light on the ES450</td>
</tr>
<tr>
<td></td>
<td>2. Make sure the ES450 is powered</td>
</tr>
<tr>
<td></td>
<td>3. Can the SLC ping the ES450 (use Maintenance -> Diagnostics -> Check ping box, type 192.168.13.31)</td>
</tr>
<tr>
<td></td>
<td>4. Make sure the LTE Gateway has the default password</td>
</tr>
<tr>
<td></td>
<td>5. Using the CLI type "connect direct telnet 192.168.13.31 port 2332" to test connection. Also, this will test to make sure the password is correct.</td>
</tr>
<tr>
<td>Cannot ping the LTE Gateway</td>
<td>Make sure there are no IP Filters enabled that could be blocking packets</td>
</tr>
<tr>
<td>No failover occurs</td>
<td>Can the SLC – ETH1 interface ping IP Address to Ping field ?</td>
</tr>
<tr>
<td>Diagnostics – check network settings</td>
<td>Using the CLI – type "show network all" to make sure ETH1 and ETH2 link states are UP.</td>
</tr>
</tbody>
</table>