

Application Note:

Using the X300 Series SDK

Part Number APP-0124
Revision B May 2023

Using the X300 Series SDK Application Note 2

Intellectual Property
© 2023 Lantronix, Inc. All rights reserved. No part of the contents of this publication may be
transmitted or reproduced in any form or by any means without the written permission of
Lantronix.

Lantronix is a registered trademark of Lantronix, Inc. in the United States and other countries.

Patented: http://patents.lantronix.com; additional patents pending.

All trademarks and trade names are the property of their respective holders.

Contacts
Lantronix, Inc.
48 Discovery, Suite 250
Irvine, CA 92618, USA
Toll Free: 800-526-8766
Phone: 949-453-3990
Fax: 949-453-3995

Technical Support
Online: www.lantronix.com/support

Sales Offices
For a current list of our domestic and international sales offices, go to the Lantronix web site at
www.lantronix.com/about/contact

Disclaimer
All information contained herein is provided “AS IS.” Lantronix undertakes no obligation to
update the information in this publication. Lantronix does not make, and specifically disclaims,
all warranties of any kind (express, implied or otherwise) regarding title, non-infringement,
fitness, quality, accuracy, completeness, usefulness, suitability or performance of the
information provided herein. Lantronix shall have no liability whatsoever to any user for any
damages, losses and causes of action (whether in contract or in tort or otherwise) in
connection with the user’s access or usage of any of the information or content contained
herein. The information and specifications contained in this document are subject to change
without notice.

http://patents.lantronix.com/
http://www.lantronix.com/support
http://www.lantronix.com/about/contact

Using the X300 Series SDK Application Note 3

Revision History

Date Rev. Comments

July 2022 A Initial document.

May 2023 B Added Secure Boot.

For the latest revision of this product document, please check our online documentation at
www.lantronix.com/support/documentation.

http://www.lantronix.com/support/documentation.html

Using the X300 Series SDK Application Note 4

Contents
Using the X300 Series SDK ... 5

Additional Documentation .. 5
Download the SDK Files .. 5
OS Requirements and Prerequisites ... 5

Creating a Custom Package Using the SDK .. 6
Sample Application .. 6
Extract the SDK ... 6
Add Your Package Feeds .. 6
Make the Custom Package ... 6
Integrate the Custom Package into an Image ... 7

Building an Image using Image Builder .. 8
Extract Image Builder .. 8
Usage .. 8
Select the Profile ... 8
Select Packages .. 9
Add Custom Files .. 10
Disable Services .. 10
Make the Image ... 10
UCI Defaults .. 11
Device Configuration ... 12

Customizing the UI Using Image Builder .. 13
Firmware File Name and Configuration Version ... 13
Customize UI Elements ... 13

Secure Boot .. 16
Firmware Filenames .. 16
Preparing the X300 for OEM Secure Boot .. 16
Releasing Custom Firmware ... 17

Using the X300 Series SDK Application Note 5

Using the X300 Series SDK
This document describes how to use the Lantronix X300 Series SDK to create custom packages and
Lantronix Image Builder to build custom firmware images. It also describes how to customize UI items
using Image Builder.

This document assumes that you have a computer running a supported Linux distribution (or VM) and
are familiar with the OpenWrt build system and the Lantronix Web Admin for configuring X300 series
devices.

The command examples use the Bash command interpreter in a development environment.

Additional Documentation
The following documentation resources provide background and reference information.

• OpenWrt online documentation (refer to developer guide)
• Lantronix X300 Series IoT Cellular Gateway User Guide

Download the SDK Files
To download the Lantronix X300 Series SDK, contact Lantronix Technical Support.

The SDK includes the following components:

• Lantronix X300 Series SDK
• Lantronix Image Builder

The Lantronix X300 Series SDK is a pre-compiled environment suitable for creating custom packages to
install on the device or build into the firmware. It's provided as a tar.xz archive.

The Lantronix Image Builder is a pre-compiled environment suitable for creating custom images for
Lantronix X300 series devices. It's also provided as a tar.xz archive.

OS Requirements and Prerequisites
The SDK and Image Builder run in 64-bit Linux. It is recommended that you use a Linux environment,
standalone or virtual machine.

The prerequisites are the same as for the OpenWrt build system. Please refer to the OpenWrt Developer
guide for build system setup, build prerequisites in different Linux distributions, and package
prerequisites.

https://openwrt.org/docs/start
https://www.lantronix.com/support/
https://openwrt.org/docs/guide-developer/start
https://openwrt.org/docs/guide-developer/start

Using the X300 Series SDK Application Note 6

Creating a Custom Package Using the SDK
Use the SDK to create a custom package. The custom package can then be included into a firmware
image using Image Builder, or alternatively, it can be installed using the OPKG package manager (see the
Lantronix X300 Series IoT Cellular Gateway User Guide).

Sample Application
You will need a sample application to create the custom package. If you don't already have an
application, you can create a simple "Hello, world" application with a structure similar to the following:

<packagename>/
|
+-- Makefile
+-- src/

|
+-- source and include files
+-- Makefile

Note: <packagename> must be one word with no spaces.

Extract the SDK
To extract the SDK archive use the following command.

tar -xvf <sdk-filename.tar.xz>

replacing sdk-filename with the actual file name of the tar archive.

Add Your Package Feeds
The feeds.conf.default file in the directory where you extracted the SDK contains the list of
package feeds. You should modify this file in the following cases:

• If the package requires additional dependency packages supplied by OpenWrt, add the
repository, or change to the proper repository.

• If the package requires additional dependency packages supplied by your own (custom)
repository, add your own repository.

• See https://openwrt.org/docs/guide-developer/feeds

Make the Custom Package
Note: All Linux commands should be run as user. Do not use root or sudo.

1. In the package/ directory, create a directory for the package. The name of the directory
should not include any spaces. For this example we'll call it "packagename".

2. Navigate to the "packagename" directory, and create or copy a Makefile.
3. In the "packagename" directory, copy or create the src/ directory.

https://openwrt.org/docs/guide-developer/feeds

Using the X300 Series SDK Application Note 7

4. Navigate to the src/ directory and copy or create the Makefile mentioning how to build the
package. This can be ignored and can also be done from package/Makefile in the parent
directory. (Refer to Openwrt online documentation for Makefile details.)

5. Still in the src/ directory, copy or create the source files and include files.
6. If the package requires additional dependency packages having no supplier/repository, then you

will need to create those packages as described in steps 1-5.
7. If the package requires additional dependency packages supplied by OpenWrt or by your own

repository, modify the feeds.conf.default file as described in the previous section, Add
Your Package Feeds. If you add or modify feeds, use the following commands to update and
install the feeds:

./scripts/feeds/update -a

./scripts/feeds/install -a

8. Run make menuconfig to open the SDK's menu and select the package. Find the package
that you want to build and select it by pressing "m". This will also select all the dependencies.
Save the configuration and exit the menu.

9. To compile the package, run:

make package/<packagename>/compile

Note: You can use V=s option for detailed logs of the build.

10. After the package is compiled, the generated .ipk file (or files) are created in the
bin/target/at91/ltrx_sam9x60/packages/ directory.

Integrate the Custom Package into an Image
Complete these steps to integrate the package you just compiled into the image. The image build steps
are described in detail in the next section, Building an Image using Image Builder.

1. Copy the .ipk (or .ipk files) that you created in the previous procedure and paste it into the
packages/ directory of the Image Builder.

2. From the SDK directory, read the tmp/.packageinfo file to find the package and
dependencies information. Refer to the following example for the "helloworld" package:

**
Source-Makefile: package/helloworld/Makefile

Package: helloworld
Submenu: Bin Packages
Version: 0-1
Depends: +libc +GCC_LIBSSP:libssp +USE_GLIBC:librt +USE_GLIBC:libpthread
Conflicts:
Menu-Depends:
Provides:

https://openwrt.org/docs/start

Using the X300 Series SDK Application Note 8

Section: utils
Category: Lantronix
Repository: base
Title: HelloWorld
Maintainer:
Source:
Type: ipkg
Description: This is a sample HelloWorld program for SDK.

@@

**

3. Copy all of the information for the package and its dependencies as shown above into
.packageinfo of the Image Builder. Be careful to ensure that the information is correct
before proceeding because if this fails then the build will fail.

4. Follow the procedure for building the image as described in the next section. Put the package
names and dependencies in the <addCustomPackages> field of the PACKAGES variable.

Building an Image using Image Builder
The Lantronix Image Builder is a pre-compiled environment suitable for creating custom images for
Lantronix X300 series devices.

Extract Image Builder
To extract the Image Builder use the following command.

$ tar -xvf <imagebuilder-filename.tar.xz>

replacing imagebuilder-filename with the actual file name of the tar archive.

Usage
To build the image, use the make image command. To customize the image, make use of the following
variables:

• PROFILE
• PACKAGES
• FILES
• DISABLED_SERVICES

Run make help to get detailed help information.

Select the Profile
The PROFILE variable specifies the target image to build.

Using the X300 Series SDK Application Note 9

PROFILE="profile-name"

For the X300 image, the profile name should be "hill".

Run make info to get the list of available profiles.

Select Packages
The PACKAGES variable lets you include or exclude packages in the firmware image.

PACKAGES="pkg1 pkg2 pkg3 -pkg4 -pkg5 -pkg6"

Package names are space separated. Excluded packages are preceded by a minus sign "-".

In the usage example above, pkg1, pkg2, and pkg3 are included in the firmware image and pkg4, pkg5,
and pkg6 are excluded from the firmware image.

Included Packages

To get the list of installed packages and IPK packages:

1. To get the list of installed packages, enter the following command.

$ cat .config | grep -v '=m' | grep -v 'is not set'| grep CONFIG |
awk -F'^CONFIG_' '{print$2}' | sed -E 's/PACKAGE_//' | grep -v
'^DEFAULT' | awk -F'=' '{print$1}' > installed_packages.txt

2. To get the list of IPK packages, enter the following command.

$ cat .config | grep -v '=y' | grep -v 'is not set'| grep CONFIG |
awk -F'^CONFIG_' '{print$2}' | sed -E 's/PACKAGE_//' | grep -v
'^DEFAULT' | awk -F'=' '{print$1}' > ipk_packages.txt

3. To separate the above new line values into space separated values and remove all CAPITAL
strings, use the following command.

$ variable=`cat <installed_packages.txt or ipk_packages.txt> | grep
-v '[!A-Z]'`

Note: Run this command once for installed_packages.txt and once for ipk_packages.txt.

List the <InstalledPackages> and <IPK Packages> in the PACKAGE variable in the make command.

Excluded Packages

The following packages will be excluded when the image is built.

Ignored Packages == -arm -odhcp6c_ext_cer_id -odhcpd-ipv6only -odhcpd_ipv6only_ext_cer_id
-luci-lib-nixio_notls

List the ignored packages in the PACKAGE variable in the make command.

Any other packages to be excluded should be listed in the PACKAGES variable, preceded by a minus sign
"-".

Using the X300 Series SDK Application Note 10

Note: If the excluded package is a dependency for another package, the build may fail.

Including Custom Packages

To include custom packages with the image, follow the instructions in Creating a Custom Package Using
the SDK to compile and integrate the package files (IPKs) and then list them in the PACKAGES variable.

Add Custom Files
The FILES variable lets you include custom configuration files into the firmware as default values.

FILES= "files"

To add custom files, create a "files" directory in the Image Builder root directory where you issue the
make command. Create a source tree that matches the source tree where the files need to be copied or
replaced in the device.

Use the FILES variable in the make command.

Disable Services
The DISABLED_SERVICES variable lists the names of services from /etc/init.d to be disabled. Multiple
services should be space separated.

DISABLED_SERVICES="svc1"

where "svc1" is the name of a service from /etc/init.d

Use the DISABLED_SERVICES variable in the make command.

Make the Image
Note: Use make help command to show help information.

1. To build the image, use the make image command.

make image PROFILE="<Profile name>" PACKAGES="<InstalledPackages> +
<Installed IPKs> + <IgnoredPackages>"

2. To customize the image build:
• To add custom packages, list them in the PACKAGES variable.
• To exclude packages, list them in the PACKAGES variable (preceded by a minus sign "-".)
• To add custom files into the firmware as default values, append the FILES variable.
• To disable inbuilt services from init.d, append the DISABLED_SERVICES variable.

make image /
PROFILE="<Profile name>" /
PACKAGES="<InstalledPackages> + <Installed IPKs> + <IgnoredPackages>
+ <customPackages> + -<unwantedPackages>" /

Using the X300 Series SDK Application Note 11

FILES="files" /
DISABLED_SERVICES="<nameOfServices>"

(If copying this example, remove the forward slashes.)

3. After completion of the image build, the build files will be output to the
bin/targets/at91/ltrx_sam9x60/ directory of the Image Builder.

4. To list packages that get installed into the image. (Use the make help command to get more
details). Two examples are provided below:

make manifest PROFILE="<Profile name>"

//To list all packages that get installed in default firmware

make manifest PROFILE="<Profile name>"
PACKAGES="<addCustomPackages>"

//To list all packages that get installed in firmware after additional custom packages

UCI Defaults
OpenWrt relies on UCI, the Unified Configuration Interface, to configure its core services. UCI defaults
provides a way to preconfigure your images, using UCI.

To set some system defaults when the device is built, it is possible to create a script in the
<imagebuilder>/files/etc/uci-defaults/ directory. Scripts in that folder are copied to the
device and executed by /etc/init.d/boot the first time the device boots. If the scripts exit with
code 0 they are deleted afterwards. Scripts that exit with non-zero exit code are not deleted and will be
re-executed at the next boot until they also successfully exit.

To update the runtime configuration using a uci-defaults script:

1. Under the <imagebuilder>/files/etc/ directory, create a folder called "uci-defaults".
2. Under the "uci-defaults" folder, create a script file called "99-default-settings".
3. Use SSH to access your X300 device and check for the parameters that you want to change. Use

the uci show <config> command to get the exact parameter name.

Example (show configuration parameters from network file):

uci show network

Example output:

Using the X300 Series SDK Application Note 12

4. In the "99_default_settings" script file, create a script like the example shown below: Use uci
set (line 3) command to set the value of the given option and uci commit (line 4) to write
the changes to the filesystem. For multiple parameters, enter each uci set command on a
new line before the uci commit command. Lines 1, 6, and 7 are fixed.

5. Give execute permission to "99_default_settings" script using the following command:

chmod +x 99_default_settings

6. Follow the Image Builder procedure to make the image (use the FILES variable in the make
command) and install the firmware on the device.

Device Configuration
There are two ways to update the device configuration. If you will modify only a few parameters or if the
parameter should be modified after the image is built, use the method as described in the previous
section, UCI Defaults. Otherwise, if there are more than a few changes, use the procedure described
below.

To update configuration:

1. Prepare the device with the custom configurations.
2. Copy the modified files from the /etc/config directory from the device.
3. Paste the copied files under the <imagebuilder>/files/etc/config/ folder.
4. Follow the Image Builder procedure to make the image (use the FILES variable in the make

command) and install the firmware on the device.

Note: Device specific parameters in the copied config folder might also get changed. To undo those
changes, use the "uci-defaults" script.

Using the X300 Series SDK Application Note 13

Customizing the UI Using Image Builder
Use the Image Builder to customize the UI and other modifications.

Firmware File Name and Configuration Version
Change the firmware file name and the configuration version by modifying the .config file in the
<imagebuilder> directory.

To change the firmware file and configuration version:

1. Change the following options in the .config file:
• CONFIG_VERSION_DIST="<Lantronix>"
• CONFIG_VERSION_NUMBER="<version-number>"

Important: Do not change any other parameters in the .config file, as doing so may cause the
image build to fail.

2. To view that the file name has been modified, build the image and check the output in the
<imagebuilder>/bin/targets/at91/ltrx_sam9x60/ directory.

Customize UI Elements
Image Builder provides ways to modify the current theme (logo, icons, stylesheet) and customize other
items such as the SSH login banner and certain text strings and parameters.

Note: The SDK does not support replacing the UI theme.

To customize UI elements:

1. View the directory structure of the files on the device by navigating to the following directory in
Image Builder and drilling down to find the desired UI theme file and other parameter.

ROOT="<imagebuilder>/build_dir/target-arm_arm926ej-
s_musl_eabi/root.orig-at91/"

2. Go to the <imagebuilder>/files directory (or create "files" directory if it doesn't exist) and
create a source tree that matches the source tree where the files need to be copied or replaced.

3. Copy the file from the ROOT and paste it under the "files" directory. Modify or replace the file
according to your requirement.

4. Build and install the image to view that the UI related files have been replaced in the device.

Refer to Table 1 for a list of commonly customized elements. The numbers in the table correspond to
the labels in Figures 1-4 showing the location of the elements on the user interface.

Using the X300 Series SDK Application Note 14

Label UI Element File Location/Description

1 SSH banner "ROOT/etc/banner"

2 Login page logo "ROOT/www/luci-static/rosy/logo.png"

3 Logo on all other pages in Web Admin "ROOT/www/luci-static/rosy/logo_t.png"

4 Other Icons/logos in Web Admin "ROOT/www/luci-static"

5 Default hostname See UCI Defaults or Device Configuration.

6 "Powered by" string "ROOT/etc/openwrt_release"

Modify DISTRIB_DESCRIPTION parameter.

7 Quick Setup information "ROOT/usr/lib/lua/luci/view/quicksetup/quicksetup
.htm"

8 Stylesheet – fonts, sizes, color, styles "ROOT/www/luci-static/rosy/cascade.css"

9 Default AP SSID See UCI Defaults or Device Configuration.

Table 1: UI elements

Example:

To customize the SSH login banner as shown in Figure 1, copy the banner file from the ROOT/etc/
directory. Navigate to the <imagebuilder>/files directory and create the etc/ directory. Paste
the banner file here and modify it as per your requirement. Build the image using Image Builder and
install the firmware on the device.

Figure 1: SSH Login Banner

Using the X300 Series SDK Application Note 15

Figure 2: Web Administration Login page

Figure 3: Quick Setup page (logged in user)

Using the X300 Series SDK Application Note 16

Figure 4: Default AP SSID

Secure Boot
Secure Boot ensures that only digitally signed software is run on the X300. If you plan to release custom
firmware, you must prepare the X300 for OEM Secure Boot using the process below.

Preparing the X300 to use custom firmware requires the use of the serial port on the X300. X300 models
that do not have a serial port are unable to use custom firmware.

Firmware Filenames
The following files are used in the process of preparing the X300 for Secure Boot. The version number
may be different.

• X300_<version>.rom - Application firmware
• sam9x60_mfgtestldr_<version>.rom - MFG loader
• sam9x60_recovldr_<version>.rom - Recovery loader

Preparing the X300 for OEM Secure Boot
1. Create an OEM public-private key pair using the following command:

openssl ecparam -name secp256r1 -genkey -out oem-priv.pem
openssl ec -in oem-priv.pem -pubout -out oem-pub.pem

2. Use the request form to submit the public key to Lantronix for signature. Lantronix returns the
signed public key as a .rom file that is named similarly to optional_rsa_key_pub.signed.rom.

3. Sign the application firmware with the OEM private key.

https://www.lantronix.com/developers/signed_key_request/
https://www.lantronix.com/developers/signed_key_request/

Using the X300 Series SDK Application Note 17

ltrx-signimage -f oem-priv.pem X300_<version>.signed.rom
X300_<version>.oem.signed.rom

4. Launch the MFG loader (sam9x60_mfgtestldr_<version>.signed.rom) by connecting to the
device over serial using a terminal emulator such as TeraTerm and sending the following
command until the G prompt appears:

!SL

5. Send the MFG loader file (sam9x60_mfgtestldr_<version>.signed.rom). In TeraTerm, this is done
by clicking File > Send File.

6. Install the Lantronix-signed OEM key (oem-pub.signed.rom).

flash download serial

7. Lock the OEM key.crypto lock-key oem-key
8. Download the OEM-signed application firmware (X300_<version>.oem.signed.rom).

flash download serial

9. Reboot.

Note: You will need to use the OEM-signed MFG loader, recovery loader, and application firmware
once the OEM key has been configured on the device.

10. Sign the MFG test loader with the OEM private key.

ltrx-signimage -f oem-priv.pem sam9x60_mfgtestldr_<version>.signed.rom
sam9x60_mfgtestldr_<version>.oem.signed.rom

11. Sign the Recovery Loader with the OEM private key.

ltrx-signimage -f oem-priv.pem sam9x60_recovldr_<version>.signed.rom
sam9x60_recovldr_<version>.oem.signed.rom

Releasing Custom Firmware
Once Secure Boot is enabled on the gateway, all custom firmware must be signed with the OEM private
key using the ltrx-signimage application. This is done each time you release a firmware rom.

ltrx-signimage -f ltrx-priv.pem X300_<version>.signed.rom
X300_<version>.oem.signed.rom

After following the procedure above to prepare the X300 for OEM Secure Boot, no additional steps with
the device are required when releasing new firmware.

	Using the X300 Series SDK
	Additional Documentation
	Download the SDK Files
	OS Requirements and Prerequisites

	Creating a Custom Package Using the SDK
	Sample Application
	Extract the SDK
	Add Your Package Feeds
	Make the Custom Package
	Integrate the Custom Package into an Image

	Building an Image using Image Builder
	Extract Image Builder
	Usage
	Select the Profile
	Select Packages
	Included Packages
	Excluded Packages
	Including Custom Packages

	Add Custom Files
	Disable Services
	Make the Image
	UCI Defaults
	Device Configuration

	Customizing the UI Using Image Builder
	Firmware File Name and Configuration Version
	Customize UI Elements

	Secure Boot
	Firmware Filenames
	Preparing the X300 for OEM Secure Boot
	Releasing Custom Firmware

