

Application Note:

Using Lua Scripts for FOX Series and
BOLERO40 Series

 Part Number APP-0117
Revision E May 2024

Using Lua scripts for FOX series and BOLERO40 series 2

Intellectual Property
© 2024 Lantronix, Inc. All rights reserved. No part of the contents of this publication may be
transmitted or reproduced in any form or by any means without the written permission of
Lantronix.

Lantronix is a registered trademark of Lantronix, Inc. in the United States and other countries.

Patented: www.lantronix.com/legal/patents/; additional patents pending.

All trademarks and trade names are the property of their respective holders.

Contacts
Lantronix, Inc.
48 Discovery, Suite 250
Irvine, CA 92618, USA
Toll Free: 800-526-8766
Phone: 949-453-3990
Fax: 949-453-3995
Technical Support
Online: www.lantronix.com/technical-support

Sales Offices
For a current list of our domestic and international sales offices, go to the Lantronix web site at
www.lantronix.com/about/contact

Disclaimer
All information contained herein is provided “AS IS.” Lantronix undertakes no obligation to
update the information in this publication. Lantronix does not make, and specifically disclaims,
all warranties of any kind (express, implied or otherwise) regarding title, non-infringement,
fitness, quality, accuracy, completeness, usefulness, suitability or performance of the
information provided herein. Lantronix shall have no liability whatsoever to any user for any
damages, losses and causes of action (whether in contract or in tort or otherwise) in
connection with the user’s access or usage of any of the information or content contained
herein. The information and specifications contained in this document are subject to change
without notice.

Revision History
Date Rev. Comments

September 2021 A Initial document

May 2023 B Updated to Firmware Release AVL_3.16.0_rc9, which includes the
following:

Added Lua functions dofile() and loadfile().

http://www.lantronix.com/legal/patents/
http://www.lantronix.com/technical-support
http://www.lantronix.com/about/contact

Using Lua scripts for FOX series and BOLERO40 series 3

Updated to Firmware Release AVL_3.17.0_rc5, which includes the
following:

Added Modbus commands,

modbus_register reg :=[]

res = avl.modbus_query()

t := avl.modbus_data([t])

t, addr := avl.modbus_register("<slave>:<LE|BE>,<reg>:<fmt>");

July 2023 C Corrected syntax of commands for Lua Start, Lua Stop and Lua
Dump

November 2023 D Updated to Firmware Release AVL_3.20.0.0, which includes the
following:

- Added Lua Events for Percepxion

- Added Lua States for Percepxion

May 2024 E Replaced mention of FOX3-2G/3G/4G series with FOX series

For the latest revision of this product document, please check our online documentation at
www.lantronix.com/support/documentation.

http://www.lantronix.com/support/documentation.html

Using Lua scripts for FOX series and BOLERO40 series 4

Contents
Deploying Lua Scripts ... 5

Prerequisites .. 5
Development Setup ... 5
Tracker/Hardware Setup ... 6
Activate Lua Premium Feature .. 6

Using Lua Scripts ... 6
Lua Sample Scripts ... 6
Load Lua on Device ... 6
Deploy a Lua File on Device .. 7
Activate Debug Output .. 7

Reference ... 8
Lua Commands ... 8
Lua Events ... 9
Lua States .. 15

Appendix: Sample Scripts .. 24
averagetemp.lua .. 24
make_script.sh... 25

Using Lua scripts for FOX series and BOLERO40 series 5

Deploying Lua Scripts
This Application note describes how to deploy Lua scripts on FOX series and BOLERO40 series devices.
It shows how to load a Lua file onto a device and run a script.

This document assumes that you have the prerequisite hardware and software tools installed and
configured for use and know how to configure and execute PFAL commands on the FOX series and
BOLERO40 series devices. The example in this document uses a Windows 10, 64-bit environment, but
you can also use Linux or Mac OS.

Prerequisites
You will need the following tools to deploy Lua script:

• The Lantronix FOX series or BOLERO40 series Promotion Kit with AVL firmware version 3.2 or
greater

• Lantronix Workbench software
• PC Windows, Linux, or MacOS computer
• IDE with full support for Lua
• Lua, version 5.2.4 or greater (https://www.lua.org/download.html)
• Bash and zip software

Development Setup
As part of development setup, install the following components:

• Install a bash and zip

o On Windows, you can use Cygwin (https://www.cygwin.com/) or WSL
(https://docs.microsoft.com/en-us/windows/wsl/install-win10)

o On Linux it is built-in or you can add via 'apt-get install bash unzip'.

o On MacOS, it is built-in.

• Install Workbench on your PC.

o https://www.lantronix.com/products/workbench/

• Install the IDE of your choice, preferably with built-in Lua Highlight and/or CodeCheck support.
Lantronix recommends:

o IntelliJ (https://www.jetbrains.com/idea/) CE Edition is free for use.
 Download and Install IntelliJ.
 Start IntelliJ.
 Go to File/Settings/Plugins -> Browse repositories -> Type "LUA"
 Select "Lua language integration for IntelliJ" click install
 Checkout this repository File/new/Project from Version Control/git

o Eclipse (https://www.eclipse.org)
 Download the latest stable version
 Install Eclipse locally. To install, go to Help > Eclipse Marketplace type "LUA."
 Install "Lua Development Tools. To install, go to Help > Eclipse Marketplace

type "TM Terminal."
 Install "TM Terminal 4.0"
 Checkout this repository file/new/project from Version control/git

https://www.lua.org/download.html
https://www.cygwin.com/
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.lantronix.com/products/workbench/
https://www.jetbrains.com/idea/
https://www.eclipse.org/

Using Lua scripts for FOX series and BOLERO40 series 6

Tracker/Hardware Setup
To install and set up the tracker, install the following components first:

• Set up tracker/promotion kit.

• Connect tracker via USB or serial to your PC (can be done via TCP).

Activate Lua Premium Feature
To activate the Lua premium feature, see the application note, "Activation of Premium-Features".

To verify which premium features are active, execute the PFAL command:

$PFAL,msg.feature

Example output:

$<MSG.Feature>
$IndexedHistory: inactive
$AES_TCP: inactive
$LUA: active (never expires)
$<end>

Using Lua Scripts

Lua Sample Scripts
The example in this application note uses the following sample script files:

• make_script.sh

• averagetemp.lua

Description

• make_script.sh converts the Lua file into a .frp archive file so that it can be loaded onto the
tracker.

• averagetemp.lua measures the internal temperature of the tracker and outputs the average
temperature every 10 seconds.

These files are provided in Appendix: Sample Scripts.

To use the sample files in your own test, copy the script file content into a plain text editor and save with
the appropriate file extension.

Load Lua on Device
Before you deploy a Lua file:

1. Set up the tracker and development environment.

2. Make sure the Lua premium feature is active.

https://cdn.lantronix.com/wp-content/uploads/pdf/AppNotes_HowToActivatePremiumFeatures.pdf?_gl=1*xblbd6*_ga*MTc5NjU4NjM4Ni4xNzA0NDQyNzkz*_ga_M2G6RLT5L3*MTcxNDY0OTIyNS41Ni4xLjE3MTQ2NDkyMjUuMC4wLjA.

Using Lua scripts for FOX series and BOLERO40 series 7

Deploy a Lua File on Device
This example demonstrates how to deploy a Lua script to the tracker using the sample script files.

To deploy a Lua file on a device:

1. Copy make_script.sh and averagetemp.lua to the cygwin home directory. Both files should
be in the same directory. On Linux and Mac, use bash and zip to perform the task.

2. Using cygwin, call make_script.sh to convert the Lua file into .frp archive file.

$./make_script.sh averagetemp.lua

This creates averagetemp.frp file in the same directory.

3. Using Workbench, connect to the tracker and upload averagetemp.frp to the tracker.

4. Run the file loaded on the device. To run it manually, execute the following PFAL commands:

$PFAL,SYS.LUA.Start

This command starts the Lua script.

$PFAL,SYS.LUA.Stop

This command stops the Lua script.

$PFAL,SYS.LUA.Dump

This command lists the Lua script source code.

Note: To automate starting Lua when the device starts, add the following command to the startup
configuration:

$PFAL,CNF.Set,AL0=SYS.DEVICE.eSTART:SYS.LUA.Start

5. View average temps being reported and displayed in the Workbench window.

Note: The sample Lua script writes the average temps to the serial channel as defined in the
following line of code, but it can be defined in the script file to send it to the TCP server or to other
channel.

avl.pfal(string.format("MSG.Send.Rawserial0,0,\"Average Temperature Is
%s\r\n\"",ave))

Activate Debug Output
Activate debug output to find errors in code.

Use the corresponding PFAL command to activate the debug output on the preferred channel.

• To activate the debug output of the serial0 interface on the 8-pin connector, use
$PFAL,CNF.Set,DBG.EN=1 or
$PFAL,CNF.Set,DBG.EN=1,serial0

• To activate the debug output of the serial1 interface on the 6-pin connector, use
$PFAL,CNF.Set,DBG.EN=1,Serial1

• To activate the debug output of the USB interface, use
$PFAL,CNF.Set,DBG.EN=1,USB

• To disable the debug output, use
$PFAL,CNF.Set,DBG.EN=0,<interface>
<interface>: 0, 1, USB

Using Lua scripts for FOX series and BOLERO40 series 8

Reference
The following tables list commands, events, and states that you can reference in Lua scripts as additional
features in the FOX3 and BOLERO 40 series devices once the Lua Premium feature is activated.

Lua Commands
PFAL commands

SYS.Lua.Start[,<"script.lua">] Loads and starts a specific Lua script

SYS.Lua.Clear[,<"script.lua">] Deletes a specific Lua script

SYS.Lua.Info[,<"script.lua">] Comment of a specific Lua script

SYS.Lua.Write[,<"script.lua">] Writes a specific Lua script

SYS.Lua.Start
Starts the Lua script loaded into the device.
To automate starting the LUA script, an alarm configuration line is needed:
$PFAL,CNF.Set,AL1=Sys.Device.eStart:SYS.Lua.start

SYS.Lua.Stop Stops a running the Lua script loaded into the device

SYS.Lua.Dump Reads the source code of that Lua script available on the device

SYS.Lua.Lock,<"password"> Locks the Lua script with a password from reading

SYS.Lua.Unlock,<"password"> Unlocks the Lua script

SYS.Lua.Dump[,<"password">] Reads the source code of that Lua script available on the device that is locked with
a password

SYS.Lua.Clear Clears the Lua script available on the device

SYS.LUA.Event,<id>,<"text"> Generates custom events for the Lua.

LUA Commands / PFAL command request

os.sleep(millies) Suspends the execution of the current thread until the time-out interval in
milliseconds elapses.

os.trace("format", args) It outputs the “args” information if debug “DBG.EN=1” is enabled.

avl.useevent(type[,OnOff]) Unmask/Mask LUA events/constant types

count := avl.i2c_read(addr, register, data) Read data from I2C devices

count := avl.i2c_write(addr, register, data) Write data from I2C devices

avl.i2c_reset() Reset the I2C bus

LUA DTCO-commands

tBytes = dtco.iso_send(TA, strData)

Sends requests to the specified address:
 tBytes - count of transmitted bytes
 TA - target address
 strData - string variable

tData, tBytes, SA := dtco.iso_recv() Reads the data the tachograph has transmitted on request:
 tData - received data

Using Lua scripts for FOX series and BOLERO40 series 9

 tBytes - cound received bytes
 SA - source address

Lua Modbus Commands

 modbus_register reg := [
"valid"
"value"
"format"
"word0"
"word1"
"word2"
"word3"
]

The polled Modbus register data.
// validity flag
// value of the register
// printed register value
// register word 0
// register word 1
// register word 2
// register word 3

res = avl.modbus_query()

Query non-periodically ModBus devices.

t := avl.modbus_data([t])

Get the polled ModBus register values.

t, addr :=
avl.modbus_register("<slave>:<LE|BE>,<reg>:
<fmt>");

Read a ModBus device register.

PFAL command request

bState, sResult := avl.pfal("command") Reads the state and the result of the execution of the PFAL command that has
been defined in the “command” field

PFAL alarm request

socket:close([force:0..1]) Close socket (force to close immediately)

ev := avl.event(timeout)

When an event happens in the device, the FOX3 creates an event type, puts details
into it and passes it to the Lua. The “ev” reads that event type. To read the type
and data of that event use the one of the event listed under “Event Requests”.
For example:
ev = avl.event(1000)
if ev ~= nil then
 if ev.type == ALARM_SYS_BLE_TAGDATA then
 ble_data = ev.u_string
 os.trace("DATA = [%s]", ble_data);
 end;
end;

Lua Events
LUA Event Requests

ev := [
 ev.type
 ev.time
 ev.idx
 ev.u_value
 ev.u_string
 ev.u_starttype
 ev.u_startreason
 ev.u_recvdata
 ev.u_recvlen

The “ev” reads the type and data of event
// values of “ev.u_xxx” fields depending on the event type
// integer event type
// integer timestamp
// integer subindex
// integer value type
// string value type
// integer starttype
// integer startreason
// string recvdata buffer

Using Lua scripts for FOX series and BOLERO40 series 10

 ev.u_ipadress
 ev.u_opid
 ev.u_opname
 ev.u_callid
 ev.u_smsnum
 ev.u_smstext
 ev.u_msgid
 ev.u_msgtype
 ev.u_msglen
 ev.u_msgdata
]

// integer recvlen length
// string ipaddress
// integer operator id
// string operator name
// string caller name
// string SMS number
// string SMS text
// CAN msg id
// CAN msg type
// CAN msg length
// CAN msg data

LUA EVENTS / Notification

 ALARM_SYS_DEVICE_WAKEUP This event is created after the device is woken up from a sleep mode

 ALARM_SYS_DEVICE_START This event is created after the device has been successfully started up

 ALARM_SYS_DEVICE_SHUTDOWN
This event is created before the device is being shut down (turned off or go
sleeping)

 ALARM_SYS_DEVICE_OVERVOLTAGE
This event is created when the device detects overvoltage on the input power
supply

 ALARM_SYS_TIMER This event is created whenever a Timer runs out.

 ALARM_SYS_TRIGGER This event is created whenever a Trigger changes its state

 ALARM_SYS_COUNTER This event is created whenever a Counter changes its state

 ALARM_SYS_nvCOUNTER This event is created whenever a nvCounter changes its state

 ALARM_SYS_ERROR This event is created whenever a system error is detected

 ALARM_SYS_USEREVENT0

This event is created whenever a user event 0 to 9 is detected accordingly

 ALARM_SYS_USEREVENT1

 ALARM_SYS_USEREVENT2

 ALARM_SYS_USEREVENT3

 ALARM_SYS_USEREVENT4

 ALARM_SYS_USEREVENT5

 ALARM_SYS_USEREVENT6

 ALARM_SYS_USEREVENT7

 ALARM_SYS_USEREVENT8

 ALARM_SYS_USEREVENT9

 ALARM_SYS_SERIALDATA0 This event is created whenever the device detects incoming data on the serial port
0, 1 accordingly

 ALARM_SYS_SERIALDATA1

 ALARM_SYS_USBDATA This event is created whenever the device detects incoming data on the USB port

ALARM_SYS_BLE_TAGDATA
This event is created whenever the device detects Manufacture Specific Data
advertised from the scanned Bluetooth Low Energy beacons

 ALARM_SYS_BLE_SCANEND
This event is created once the FOX3-3G-BLE has ended a scan session for BLE
sensors

 ALARM_SYS_NFC_RELEASED
This event is created whenever a connected NFC reader loses the attached NFC
TAG

 ALARM_SYS_BLE_REGISTER This event is created whenever the device detects a BLE tag during scanning

Using Lua scripts for FOX series and BOLERO40 series 11

 ALARM_SYS_BLE_RELEASE
This event is created whenever the device loses a detected BLE tag after scanning
ends

 ALARM_SYS_BLE_CONNECTED
This event is created once a connection is established between the FOX3-3G-BLE
as a peripherals and one central device (such as a mobile phone)

 ALARM_SYS_BLE_DISCONNECTED
This event is called once the FOX3-3G-BLE is disconnected from the central device
(such as a mobile phone)

ALARM_SYS_BLEDATA
This event is created whenever the device receives data from a BLE slave during a
BLE connection.

 ALARM_SYS_CAN
This event is called whenever the device detects incoming data from the CAN
interface

 ALARM_SYS_TIMESYNC This event is created whenever the device detects time synchronization

 ALARM_SYS_OBDII_DTC
This event is created whenever the device detects incoming data from the OBDII
DTC interface

 ALARM_SYS_OBDII This event is created whenever the device detects incoming data from the OBDII

 ALARM_SYS_FMS_VAR
This event is created whenever the device detects incoming data from the FMS
VAR

 ALARM_SYS_J1939_VAR
This event is created whenever the device detects incoming data from the J1939
VAR

 ALARM_SYS_FMS
This event is created whenever the device detects incoming data from the FMS
interface

 ALARM_SYS_J1939
This event is created whenever the device detects incoming data from the J1939
interface

 ALARM_SYS_1WIRE_REGISTER
This event is created whenever a 1-Wire device is connected and registered to the
1-Wire interface of the FOX device

 ALARM_SYS_1WIRE_RELEASE
This event is created whenever a 1-Wire device is released from the 1-Wire
interface of the FOX device

 ALARM_SYS_BAT_LOWBAT This event is created whenever the internal battery gets low

 ALARM_SYS_BAT_CHARGE This event is created whenever the internal battery starts charging process.

 ALARM_SYS_POWER_DETECTED
This event is created whenever a connection to an external power supply is
detected

 ALARM_SYS_POWER_DROPPED This event is created whenever the external power supply is dropped

 ALARM_SYS_NFC_DETECTED This event is created whenever the external NFC reader detects/reads a NFC tag

 ALARM_SYS_WLAN_CONNECTING
This event is created when the WLAN module is trying to connect to one of 5
wireless access points

 ALARM_SYS_WLAN_CONNECTED
This event is created once the WLAN module is connected to one of 5 wireless
access points

 ALARM_SYS_WLAN_DISCONNECTED
This event is created once the WLAN module is disconnected from one of 5
wireless access points

 ALARM_SYS_WLAN_RECEIVED
This event is created whenever the WLAN module receives data from one of 5
wireless access points

 ALARM_SYS_WLAN_TCP_CONNECTED
This event is created once a connection is established between the device and
remote server over one of 5 wireless access points

 ALARM_SYS_WLAN_TCP_DISCONNECTED
This event is created once the device is disconnected from the remote server over
one of 5 wireless access points

Using Lua scripts for FOX series and BOLERO40 series 12

IO

 ALARM_IO_IN This event is created whenever a device input/output signal changes its state

 ALARM_IO_MOTION_MOVING This event is created once the device detects moving (IO.Motion.eMoving) based
on pre-defined threshold.

 ALARM_IO_MOTION_STANDING This event is created once the device detects standing (IO.Motion.eStanding)
based on pre-defined threshold.

 ALARM_IO_MOTION_FORCE This event is created once the pre-configured force acceleration
(IO.Motion.eForce) is exceeded.

 ALARM_IO_MOTION_3DFORCE This event is created once the device exceeds the configured force acceleration in
one direction (IO.Motion.e3DForce)

 ALARM_IO_MOTION_CRASH Not supported (Event from external motion sensor)

 ALARM_IO_MOTION_INTERNAL Not supported (Event from external motion sensor)

 ALARM_IO_MOTION_EXTERNAL Not supported (Event from external motion sensor)

 ALARM_IO_BEARING This event is created once the device detects moving (IO.Motion.eBearing) based
on pre-defined threshold.

GPS

 ALARM_GPS_NAV_FIX This event is called once the device gets a valid GNSS fix

 ALARM_GPS_NAV_HEADING This event is created once the device detects changes in heading for more than
the specified heading tolerance (GPS.Nav.eChangeHeading).

 ALARM_GPS_NAV_HEADING2 This event is created once the device detects changes in heading2 for more than
the specified heading2 tolerance (GPS.Nav.eChangeHeading2).

 ALARM_GPS_GEOFENCE This event is created once the device detects in/out of one of pre-configured
geofences.

 ALARM_GPS_AREA This event is created once the device detects in/out of one of pre-configured areas.

 ALARM_GPS_MULTI_GEOFENCE This event is created once the device detects in/out of one of pre-configured multi-
geofences

 ALARM_GPS_WAYPOINT_GEOFENCE This event is created once the device leaves the corridor of preconfigured
waypoints.

 ALARM_GPS_HISTORY_TAUT Not supported (Event used in GPS history download)

 ALARM_GPS_HISTORY_PUSH_FINISH Not supported (Event used in GPS history download)

 ALARM_GPS_JAMMING This event is called once the GPS jamming is detected

 ALARM_GPS_ANT_PLUGGED This event is created once an external GPS antenna is plugged/connected

 ALARM_GPS_ANT_UNPLUGGED This event is created once an external GPS antenna is unplugged/disconnected

GSM

 ALARM_GSM_OPFOUND This event is created once a GSM network operator is found

 ALARM_GSM_OPLOST This event is created when the GSM network operator is lost

 ALARM_GSM_CELLCHANGE This event is created whenever a GSM cell is changed

 ALARM_GSM_CBM This event is created whenever new cell broadcast message is received

 ALARM_GSM_SIMLOST This event is created whenever a simcard is no longer present

 ALARM_GSM_MCCCHANGE This event is created whenever a mobile country code is changed

 ALARM_GSM_JAMMING This event is created whenever GSM jamming is detected

Using Lua scripts for FOX series and BOLERO40 series 13

 ALARM_GSM_VOICECALL_INCOMING_RING This event is created when an incoming voice call is received

 ALARM_GSM_VOICECALL_RING_STOPPED This event is created when the device stops ringing

 LARM_GSM_VOICECALL_OUTGOING_DIAL This event is created when an outgoing voice call is dialled

ALARM_GSM_VOICECALL_CALL_ESTABLISHED This event is created when an outgoing voice call is established

 ALARM_GSM_VOICECALL_CALL_FINISHED This event is created when an outgoing voice call is finished

 ALARM_GSM_SMS_INCOMING This event is created when an SMS is received

 ALARM_GSM_SMS_SENT This event is created when an SMS is sent

 ALARM_GSM_GPRS_CONNECTING This event is created when device starts connecting to GPRS services

 ALARM_GSM_GPRS_CONNECTED This event is created when the device is attached to GPRS services

 ALARM_GSM_GPRS_DISCONNECTING This event is created when device stars disconnecting from GPRS services

ALARM_GSM_GPRS_DISCONNECTED This event is created when the device is successfully detached from GPRS services

TCP

 ALARM_TCP_CLIENT_CONNECTING This event is created when device starts connecting to a TCP server

 ALARM_TCP_CLIENT_CONNECTED This event is created when device is connected to the TCP server

 ALARM_TCP_CLIENT_PACKETSENT This event is created when a TCP packet is sent

 ALARM_TCP_CLIENT_PINGSENT This event is created when a TCP ping is sent

 ALARM_TCP_CLIENT_RECEIVED This event is created when data is received from the TCP server

 ALARM_TCP_CLIENT_DISCONNECTING This event is created when device stars disconnecting from the TCP server

 ALARM_TCP_CLIENT_DISCONNECTED This event is created when device is disconnected from the TCP server

 ALARM_TCP_CLIENT_BUFFER_EMPTY This event is created once the TCP buffer is emptied

 ALARM_TCP_CLIENT_FLASHBUFFER_EMPTY This event is created once the Flash buffer is emptied

ALARM_TCP_CLIENT2_CONNECTING This event is created when device starts connecting to a TCP server

ALARM_TCP_CLIENT2_CONNECTED This event is created when device is connected to the TCP server

ALARM_TCP_CLIENT2_PACKETSENT This event is created when a TCP packet is sent

ALARM_TCP_CLIENT2_PINGSENT This event is created when a TCP ping is sent

ALARM_TCP_CLIENT2_RECEIVED This event is created when data is received from the TCP server

ALARM_TCP_CLIENT2_DISCONNECTING This event is created when device starts disconnecting from the TCP server

ALARM_TCP_CLIENT2_DISCONNECTED This event is created when device is disconnected from the TCP server

ALARM_TCP_CLIENT2_FLASHBUFFER_EMPTY This event is created once the flash buffer is emptied

ALARM_TCP_CLIENT2_BUFFER_EMPTY This event is created once the TCP buffer is emptied

ALARM_SYS_CO_PDO_RECEIVED This event occurs when a CANopen PDO event is received.

 ALARM_TCP_SMTP_SENT This event is created once an email is sent

 ALARM_TCP_SMTP_FAILED This event is created when sending email failed

 ALARM_TCP_UDP_RECEIVED This event is created when receiving data via UDP

ALARM_MQTT_CLIENT_CONNECTING This event is created when device starts connecting to a MQTT server

ALARM_MQTT_CLIENT_CONNECTED This event is created when device is connected to the MQTT server

ALARM_MQTT_CLIENT_PACKETSENT This event is created when a TCP packet is sent

ALARM_MQTT_CLIENT_PINGSENT This event is created when a TCP ping is sent

Using Lua scripts for FOX series and BOLERO40 series 14

ALARM_MQTT_CLIENT_DISCONNECTING This event is created when device starts disconnecting from the MQTT server

ALARM_MQTT_CLIENT_DISCONNECTED This event is created when device is disconnected from the MQTT server

ALARM_MQTT_CLIENT_FLASHBUFFER_EMPT
Y

This event is created once the flash buffer is emptied

ALARM_MQTT_CLIENT_BUFFER_EMPTY This event is created once the message buffer is emptied

FILE

 ALARM_FILE_AVAILABLE This event is created when file is available

ECODRIVE

 ALARM_ECODRIVE_START

These events are created when the ecodrive is started/stopped/on harsh-turn/-
brake/-accelerate

 ALARM_ECODRIVE_STOP

 ALARM_ECODRIVE_TURN

 ALARM_ECODRIVE_BRAKE

 ALARM_ECODRIVE_ACCELERATE

BLUEID

 ALARM_BLUEID_CMD

These events are created when BLUEID gets command, data or tickets ALARM_BLUEID_DATA

 ALARM_BLUEID_TICKETS

TYPE

ALARM_TYPE_INTERNAL User specific event types for LUA (i.e timer or user events)

LUA

ALARM_SYS_LUA_START
These events are created when Lua is started or stopped

ALARM_SYS_LUA_STOP

CAN

ALARM_SYS_CANMSG This event is created when contents of this CAN message is changed

DTCO

ALARM_SYS_DTCO_CONFIRM Confirmation that the message has been sent completely

ALARM_SYS_DTCO_INCOMING Indication that the requested message has got incoming data

TCP Socket

NET_TCP Socket is used for a TCP connection

NET_UDP Socket is used for a UDP connection

ALARM_TCP_SOCKET_IFUP Socket interface is up

ALARM_TCP_SOCKET_IFDOWN Socket interface is down

ALARM_TCP_SOCKET_CONNECTED Socket interface is connected

ALARM_TCP_SOCKET_DISCONNECTED Socket interface is disconnected

ALARM_TCP_SOCKET_RECV Socket interface has received data

ALARM_TCP_SOCKET_SENT Socket interface has sent data

IOBOX

ALARM_SYS_IOBOX_LOST This event is created when a connection to the IOBOX-MIN/CAN or WLAN is lost

Using Lua scripts for FOX series and BOLERO40 series 15

PERCEPXION

ALARM_PX_CLIENT_STARTED This event is created when PX MQTT client is started.

ALARM_PX_CLIENT_STOPPED This event is created when PX MQTT client is stopped.

ALARM_PX_CLIENT_CAP_NEG_STARTED This event is created when PX client starts capability negotiation.

ALARM_PX_CLIENT_CAP_NEG_COMPLETED This event is created when PX client completes capability negotiation.

ALARM_PX_CLIENT_MQTT_RECEIVED This event is created when PX MQTT client gets a subscription.

ALARM_PX_CLIENT_MQTT_CONNECTED This event is created when PX MQTT client is connected to the server.

ALARM_PX_CLIENT_MQTT_DISCONNECTED This event is created when PX MQTT client is disconnected from the server.

ALARM_PX_CLIENT_REGISTERED This event is created when PX client is registered on the server.

ALARM_PX_CLIENT_PUBLISHED This event is created when PX client publishes telemetry data.

ALARM_PX_CLIENT_UPDATES_AVAILABLE This event is created when PX client gets available updates.

PFAL state request

state := avl.state(type[,index]) When a state changes in the device, the FOX3 creates a state type, puts details into
it and passes it to the Lua. The “state” reads that state type. To read the type and
data of that state use the one of the state types listed under “State Requests”.
For example:
st = avl.event(1000)
if st ~= nil then
 if st.type == STATE_SYS_BLE_CONNECTED then
 ble_data = st.u_string
 os.trace("DATA = [%s]", ble_data);
 end;
end;

Lua States

State Requests

state := [
 state.type
 state.idx
 state.u_bool
 state.u_value
 state.u_string
 state.u_starttype
 state.u_startreason
 state.u_opid
 state.u_opname
]

Reads the type and the data assigned to that state
// values of type “state.u_xxx” fields depending on the state type
// integer state type
// integer subindex
// boolean value type
// integer value type
// string value type
// integer starttype
// integer startreason
// integer operator id
// string operator name

STATES / Notifications

STATE_SYS_DEVICE_START Value of the PFAL SYS.Device.sStart state

 STATE_SYS_TIMER Value of the PFAL SYS.Timer.s<id> state

 STATE_SYS_TRIGGER Value of the PFAL SYS.Trigger.s <id> state

 STATE_SYS_COUNTER Value of the PFAL SYS.Counter.s <id> state

 STATE_SYS_nvCOUNTER Value of the PFAL SYS.NVCounter.s <id> state

Using Lua scripts for FOX series and BOLERO40 series 16

 STATE_SYS_CAN Value of the PFAL SYS.sCan state

 STATE_SYS_BAT_VOLTAGE Value of the PFAL SYS.Bat.sVoltage state

 STATE_SYS_BAT_CHARGE Value of the PFAL SYS.Bat.sCharge state

 STATE_SYS_BAT_MODE Value of the PFAL SYS.Bat.sMode state

 STATE_SYS_POWER_VOLTAGE Value of the PFAL SYS.Power.sVoltage state

 STATE_SYS_1WIRE_REGISTER Value of the PFAL SYS.Power.sRegister state

 STATE_SYS_NFC_DETECTED Value of the PFAL SYS.NFC.sDetected state

 STATE_SYS_BLE_CONNECTED Value of the PFAL SYS.BLE.sConnected state

 STATE_SYS_WLAN_CONNECTED Value of the PFAL SYS.WLAN.sConnected state

 STATE_SYS_WLAN_DISCONNECTED Value of the PFAL SYS.WLAN.sDisconnected state

 STATE_SYS_WLAN_TCP_CONNECTED Value of the PFAL SYS.WLAN.sTCPConnected state

 STATE_SYS_WLAN_TCP_DISCONNECTED Value of the PFAL SYS.WLAN.sTCPDisconnected state

IO

 STATE_IO_IN Value of the PFAL IO.IN.s<id> state

 STATE_IO_ANA Value of the PFAL IO.ANA.s<id> state

 STATE_IO_PULSECNT Value of the PFAL IO.PulseCount.s<id> state

 STATE_IO_MOTION_MOVING Value of the PFAL IO.Motion.sMoving state

STATE_IO_MOTION_STANDING Value of the PFAL IO.Motion.sStanding state

GPS

 STATE_GPS_NAV_FIX Value of the PFAL GPS.Nav.sFix state

 STATE_GPS_NAV_SPEED Value of the PFAL GPS.Nav.sSpeed state

 STATE_GPS_NAV_POSITION Value of the PFAL GPS.Nav.sPosition state

 STATE_GPS_NAV_DIST Value of the PFAL GPS.Nav.sDist state

 STATE_GPS_NAV_DELTASPEED Value of the PFAL GPS.Nav.sDeltaSpeed state

 STATE_GPS_HISTORY_DIST Value of the PFAL GPS.History.sDist state

 STATE_GPS_AREA Value of the PFAL GPS.Area.s<id> state

STATE_GPS_GEOFENCE Value of the PFAL GPS.Geofence.s<id> state

 STATE_GPS_MULTI_GEOFENCE Value of the PFAL GPS.MultiGeofence.s<id> state

 STATE_GPS_WAYPOINT_GEOFENCE Value of the PFAL GPS.WPGF.s<id> state

GSM

STATE_GSM_OPVALID Value of the PFAL GSM.sOpValid state

 STATE_GSM_HOME Value of the PFAL GSM.sNoRoaming state

 STATE_GSM_ROAMING Value of the PFAL GSM.sRoaming state

 STATE_GSM_VOICECALL_READY_FOR_CALL Value of the PFAL GSM.Voicecall.sReady state

 STATE_GSM_VOICECALL_INCOMING_RING Value of the PFAL GSM.Voicecall.sIncoming state

 TATE_GSM_VOICECALL_NUMBER_OF_RINGS Value of the PFAL GSM.Voicecall.sRingCounter state

STATE_GSM_VOICECALL_OUTGOING_DIAL Value of the PFAL GSM.Voicecall.sOutgoing state

Using Lua scripts for FOX series and BOLERO40 series 17

 STATE_GSM_VOICECALL_INSIDE Value of the PFAL GSM.Voicecall.sInside state

 STATE_GSM_GPRS_CONNECTING Value of the PFAL GSM.GPRS.sConnecting state

 STATE_GSM_GPRS_CONNECTED Value of the PFAL GSM.GPRS.sConnected state

 STATE_GSM_GPRS_DISCONNECTING Value of the PFAL GSM.GPRS.sDisconnecting state

 STATE_GSM_GPRS_DISCONNECTED Value of the PFAL GSM.GPRS.sDisconnected state

TCP

 STATE_TCP_CLIENT_IDLE Value of the PFAL TCP.Client.sIdle state

 STATE_TCP_CLIENT_CONNECTING Value of the PFAL TCP.Client.sConnecting state

 STATE_TCP_CLIENT_CONNECTED Value of the PFAL TCP.Client.sConnected state

 STATE_TCP_CLIENT_DISCONECTING Value of the PFAL TCP.Client.sdisconnecting state

 STATE_TCP_CLIENT_DISCONECTED Value of the PFAL TCP.Client.sDisconnected state

STATE_TCP_CLIENT2_IDLE Value of the PFAL TCP.Client2.sIdle state

STATE_TCP_CLIENT2_CONNECTING Value of the PFAL TCP.Client2.sConnecting state

STATE_TCP_CLIENT2_CONNECTED Value of the PFAL TCP.Client2.sConnected state

STATE_TCP_CLIENT2_DISCONNECTING Value of the PFAL TCP.Client2.sdisconnecting state

STATE_TCP_CLIENT2_DISCONNECTED Value of the PFAL TCP.Client2.sDisconnected state

STATE_MQTT_CLIENT_IDLE Value of the PFAL TCP.MQTT.sIdle state

STATE_MQTT_CLIENT_CONNECTING Value of the PFAL TCP.MQTT.sConnecting state

STATE_MQTT_CLIENT_CONNECTED Value of the PFAL TCP.MQTT.sConnected state

STATE_MQTT_CLIENT_DISCONNECTING Value of the PFAL TCP.MQTT.sdisconnecting state

STATE_MQTT_CLIENT_DISCONNECTED Value of the PFAL TCP.MQTT.sDisconnected state

ECODRIVE

 STATE_ECODRIVE_START Value ecodrive state is started

 STATE_ECODRIVE_STOP Value ecodrive state is stopped

 STATE_ECODRIVE_SPEED1 Value ecocdrive has speed limit1

 STATE_ECODRIVE_SPEED2 Value ecocdrive has speed limit2

 STATE_ECODRIVE_SPEED3 Value ecocdrive has speed limit3

GSM

GSM_DISABLED Value GSM state is disable

GSM_SLEEP Value GSM state is sleep

GSM_IDLE Value GSM state is idle

GSM_INIT_BASE Value GSM state is initializing base commands

GSM_INIT_MAIN Value GSM state is initializing main commands

GSM_INIT_NET Value GSM state is initializing gprs commands

GSM_VERSION Value GSM state is checking cellular version

GSM_IMSI_CHECK Value GSM state is checking IMSI number

GSM_SMS_CHECK Value GSM state is checking SMS activity

Using Lua scripts for FOX series and BOLERO40 series 18

READY_FOR_CALL Value GSM is ready for call

INCOMING_VOICE_CALL Value GSM has incoming voice call

INCOMING_DATA_CALL Value GSM has incoming data call

INCOMING_FAX_CALL Value GSM has incoming fax call

OUTGOING_VOICE_CALL Value GSM has outgoing voice call

INSIDE_VOICE_CALL Value GSM is inside voice call

TMER

 TIMER_ERASED Timer is cleared

 TIMER_INACTIVE Timer is inactive

 TIMER_PAUSED Timer is paused

 TIMER_RUNNING Timer is running

PERCEPXION

STATE_PX_CLIENT_STARTED Value of PFAL PX.client.sstarted state

STATE_PX_CLIENT_STOPPED Value of PFAL PX.client.sstopped state

STATE_PX_CLIENT_CAP_NEG_STARTED Value of PFAL PX.client.cap.neg.sstarted state

STATE_PX_CLIENT_CAP_NEG_COMPLETED Value of PFAL PX.client.cap.neg.scompleted state

STATE_PX_CLIENT_MQTT_RECEIVED Value of PFAL PX.MQTT.sreceived state

STATE_PX_CLIENT_MQTT_CONNECTED Value of PFAL PX.MQTT.sconnected state

STATE_PX_CLIENT_MQTT_DISCONNECTED Value of PFAL PX.MQTT.sdisconnected sate

STATE_PX_CLIENT_REGISTERED Value of PFAL PX.client.sregistered state

STATE_PX_CLIENT_PUBLISHED Value of PFAL PX.client.spublished state

STATE_PX_CLIENT_UPDATES_AVAILABLE Value of PFAL PX.client.updates.savailable state

PFAL file transfer

len := avl.file_upload(buffer) Reads the length of the file

Format string with dynamic entries

sResult := avl.format("format", args) Reads the formatted “args” that has been defined in the “args” field

PFAL variables

sResult := avl.version() Reads the firmware version

sResult := avl.device() Reads the device name

iResult := avl.timer(index) Reads the timer index

iResult := avl.trigger(index) Reads the trigger index

iResult := avl.counter(index) Reads the counter index

iResult := avl.nvcounter(index) Reads the nvcounter index

GPS state and data

sValue := avl.gps_version() Reads the GPS firmware version

tResult := avl.gps_data() Reads the current GPS data

tResult := avl.gps_sats() Reads the GPS satellites in use

Using Lua scripts for FOX series and BOLERO40 series 19

GSM state and data

sValue := avl.gsm_version() Reads the GSM firmware version

tResult := avl.gsm_data() Reads the current GSM data

sValue := avl.gsm_imei() Reads the IMEI of the device

sValue := avl.gsm_imsi() Reads the IMSI of the SIM card

sValue := avl.gsm_iccid() Reads the ICCID of the SIM card

Motion data

tResult := avl.motion_data() Reads the motion data

Filesystem access

file := io.open(filename [, mode] This function opens a file, in the mode specified in the string mode.
 It returns a new file handle, or, in case of errors, nil plus an error message.
 The mode string can be any of the following:

 "r": read mode (the default);
 "w": write mode;
 "a": append mode;
 "r+": update mode, all previous data is preserved;
 "w+": update mode, all previous data is erased;
 "a+": append update mode, previous data is preserved,
 writing is only allowed at the end of file.

 The mode string can also have a 'b' at the end,
 which is needed in some systems to open the file in binary mode.

io.lines (filename) Opens the given file name in read mode and returns an iterator function
that works like file:lines(···) over the opened file.
When the iterator function detects the end of file, it returns nil (to finish
the loop) and automatically closes the file.
The call io.lines() (with no file name) is equivalent to io.input():lines();
that is, it iterates over the lines of the default input file.
In this case it does not close the file when the loop ends.
In case of errors this function raises the error, instead of returning an error
code.

io.read(...) Equivalent to file:read(). Without a file, reads from the default input file.

io.write(...) Equivalent to file:write(). Without a file, writes to the default output file.

io.type(file) Checks whether file is a valid file handle. Returns the string "file" if obj is
an open file handle, "closed file" if obj is a closed file handle, or nil if obj
is not a file handle.

io.flush(file) Equivalent to file:flush(). Without a file, closes the default output file.

io.close(file) Equivalent to file:close(). Without a file, closes the default output file.

file:read(···) Reads the file file, according to the given formats, which specify what to
read. For each format, the function returns a string (or a number) with
the characters read, or nil if it cannot read data with the specified format.
When called without formats, it uses a default format that reads the next
line (see below).

The available formats are:

 "*n": reads a number; this is the only format that returns a number
instead of a string.

Using Lua scripts for FOX series and BOLERO40 series 20

 "*a": reads the whole file, starting at the current position. On end of file,
it returns the empty string.
 "*l": reads the next line skipping the end of line, returning nil on end of
file. This is the default format.
"*L": reads the next line keeping the end of line (if present), returning nil
on end of file.
number: reads a string with up to this number of bytes, returning nil on
end of file.
If number is zero, it reads nothing and returns an empty string, or nil on
end of file.

file:write(···) Writes the value of each of its arguments to file. The arguments must be
strings or numbers.
In case of success, this function returns file.
Otherwise it returns nil plus a string describing the error.

file:lines() Returns an iterator function that, each time it is called, reads the file
according to the given formats.
When no format is given, uses "*l" as a default.
Unlike io.lines, this function does not close the file when the loop ends.
In case of errors this function raises the error, instead of returning an error
code.

file:flush() Saves any written data to file.

file:close() Closes file. Note that files are automatically closed when their handles are
garbage collected, but that takes an unpredictable amount of time to
happen.

file:seek([whence] [, offset]) Sets and gets the file position, measured from the beginning of the file,
to the position given by offset plus a base specified by the string whence,
as follows:

"set": base is position 0 (beginning of the file);
"cur": base is current position;
"end": base is end of file;

In case of success, seek returns the final file position, measured in bytes
from the beginning of the file. If seek fails, it returns nil, plus a string
describing the error.
The default value for whence is "cur", and for offset is 0.
Therefore, the call file:seek() returns the current file position, without
changing it; the call file:seek("set") sets the position to the beginning of
the file (and returns 0); and the call file:seek("end") sets the position to
the end of the file, and returns its size.

dofile() Executes a chunk of code stored in a file.

loadfile() Loads a Lua chunk from a file, compiles the chunk and returns the
compiled chunk as a function.

os.remove(name) Remove the file given as "name".

os.rename(oldname, newname) Rename file "oldname" to "newname".

os.mkdir(path) Create the directory given as "path".

os.rmdir(path) Remove the directory given as "path".

stat := os.stat(filename [, request|result]) Returns a table with file attributes corresponding to filename (or nil
followed by an error message and a system-dependent error code in case
of error).

Using Lua scripts for FOX series and BOLERO40 series 21

If the second optional argument is given and is a string, then only the
value of the named attribute is returned (this use is equivalent to
os.stat(file)[request]. But the table is not created and only one attribute
is retrieved from the OS). If a table is passed as the second argument, it
(result) is filled with attributes and returned instead of a new table.
The attributes are described as follows; attribute mode is a string, all the
others are numbers.
dev, rdev - On Unix systems, this represents the device that the inode
resides on. On Windows systems, represents the drive number of the disk
containing the file.
Ino - On Unix systems, this represents the inode number. On Windows
systems this has no meaning mode.
String - representing the associated protection mode (the values could be
file, directory, or other).
Nlink - Number of hard links to the file.
Uid - User-id of owner (Unix only, always 0 on Windows)
Gid - Group-id of owner (Unix only, always 0 on Windows)
Access - Time of last access
Modification - Time of last data modification
Change - Time of last file status change
Size - File size, in bytes
Permissions - File permissions string

iter, dir_obj := os.dir (path) Lua iterator over the entries of a given directory.
Each time the iterator is called with dir_obj, it returns a directory entry's
name as a string, or nil if there are no more entries. You can also iterate
by calling dir_obj:next(), and explicitly close the directory before the
iteration finished with dir_obj:close(). Raises an error if path is not a
directory.

FS directory object dir := [
dir:next()
dir:close()
]

// Next entry from directory
// Close directory

Direct CAN access

result := avl.can_write(chan, ext, id, data) Writes a message to the corresponding CAN interface. Returns 1 if
sending of the CAN message was successfully.
 chan: CAN interface [0,1]
 ext: message type std/ext [0,1]
 id: message id to send
 data: message data to send

result := avl.can_read([table]) Reads a message from CAN interface. Returns a table filled with a CAN
message or Nil if no data is available. If a table is passed as argument, it is
filled with message data (table) and returned instead of a new table.
The attributes are described as follows; attribute data is a string, all others
are numbers.

ch: The CAN interface the message is read from [0,1]
ext: The type of the message std/ext [0,1]
msg: The id of the message
size: The length of the message
data: The message data (0..8 bytes)

Socket interface

socket := net.create_socket([type, param])

Using Lua scripts for FOX series and BOLERO40 series 22

socket:connect(<"IP"|"URL">, port)
socket:close([flush])
socket:flush()
socket:hold()
socket:unhold()
tVal := socket:ttl([ttl])
tVal := socket:bufsize([bytes])
tBytes := socket:send(data)
data, tBytes := socket:recv()
tIP, tPort := socket:getaddr()
tIP, tPort := socket:getpeer()
tIP := net.dns_resolve("URL")
socket:on(<"connection"|"disconnection"|"sent"|"rec
eive">, function())

- unhold the socket
- Set/Read ttl value
- Set/Read buffer size
- Send data to socket
- Read data from socket

Timer variable

timer := avl.tick(interval, event_type);

timer:start([time]) Restarts a timer or start a timer with a new interval

timer:stop() Stops the timer

timer:single() Restarts a single timer

timer:cyclic() Restarts a cyclic timer

iResult := timer:id() Reads the timer event type

iResult := timer:interval() Reads the timer interval time

iResult := timer:elapsed() Reads the timer elapsed time

GPS data

record := [
 lat
 lon
 alt
 speed
 course
 ecef_x
 ecef_y
 ecef_z
 dop
 time
 fix
]

Reads the GPS values listed within the [] square brackets.
// Latitude (degree)
// Longitude (degree)
// Altitude (meter)
// speed (m/s)
// course (degree)
// ECEF-X (meter)
// ECEF-Y (meter)
// ECEF-Z (meter)
// pdop value
// time (seconds)
// fix (boolean)

GPS satellites record

record := [
 gps_num
 gps_sat1
 ..
 gps_sat12
 gls_num
 gls_sat1
 ..
 gls_sat12
]

Reads the GPS values listed within the [] square brackets.
// Number of GPS satellites
// Dump of satellite data
// "SatID,Elevation,Azimuth,AvgCNo,Used"
// Number of GLS satellites
// Dump of satellite data
// "SatID,Elevation,Azimuth,AvgCNo,Used"

GSM data

record := [Reads the GSM values listed within the [] square brackets.

Using Lua scripts for FOX series and BOLERO40 series 23

 state
 csq
 creg
 cpas
 lac
 cellid
 opid
 opname
 callstate
 callnumber
]

// GSM state
// CSQ value
// CREG value
// CPAS value
// local area code
// cell id
// operator id
// operator name (string)
// call state
// caller number (string)

Motion data

record := [
 val_x
 val_y
 val_z
 min_x
 min_y
 min_z
 max_x
 max_y
 max_z
 nsum_x
 nsum_y
 nsum_z
]

Reads the motion values listed within the [] square brackets.
// Current X acceleration
// Current Y acceleration
// Current Z acceleration
// Min. X acceleration in <g_coe> interval
// Min. Y acceleration
// Min. Z acceleration
// Max. X acceleration in <g_coe> interval
// Max. Y acceleration
// Max. Z acceleration
// Normal X gravitation in <g_coe> interval
l// Normal Y gravitation
// Normal Z gravitation

LUA library

os.clock(), os.date(), os.time(), os.difftime(), os.exit(),
os.execute(), os.getenv(), os.setenv(), os.sleep(),
os.setlocale()

Documentation for LUA under https://www.lua.org/manual/

coroutine.create(), coroutine.resume(),
coroutine.running(), coroutine.status(),
coroutine.wrap(), coroutine.yield()

string.byte(), string.char(), string.dump(), string.find(),
string.format(), string.gmatch(), string.gsub(),
string.len(), string.lower(), string.match(), string.rep(),
string.reverse(), string.sub(), string.upper(),
string.replace()

table.concat(), table.insert(), table.pack(),
table.unpack(), table.remove(), table.sort()

math.abs(), math.acos(), math.asin(), math.atan2(),
math.atan(), math.ceil(), math.cosh(), math.cos(),
math.deg(), math.exp(), math.floor(), math.fmod(),
math.frexp(), math.ldexp(), math.log(), math.max(),
math.min(), math.modf(), math.pow(), math.rad(),
math.random(), math.randomseed(), math.sinh(),
math.sin(), math.sqrt(), math.tanh(), math.tan()

bit32.arshift(), bit32.band(), bit32.bnot(), bit32.bor(),
bit32.bxor(), bit32.btest(), bit32.extract(),
bit32.lrotate(), bit32.lshift(), bit32.replace(),
bit32.rrotate(), bit32.rshift()

https://www.lua.org/manual/

Using Lua scripts for FOX series and BOLERO40 series 24

Appendix: Sample Scripts

averagetemp.lua
--
-- Created by IntelliJ IDEA.
-- User: username
-- Date: 25.01.19
-- Time: 09:44
-- To change this template use File | Settings | File Templates.
--script ro read temperature every 10 sec

timer1 = avl.tick(10000, 1000)
timer1:cyclic()

storage = {}

function event (e)
 -- local t = os.clock() or ...
 local t = e.time
 local type = e.type

 -- Possible user events
 if type >= ALARM_TYPE_INTERNAL then
 type = type - ALARM_TYPE_INTERNAL
 if type == timer1:id() then
 os.trace("ser event %d \"%s\" (%d ms)", type, e.u_string, t)

 os.trace(avl.format("Temperature is &(Temp)"))
 local currentTemp = tonumber(avl.format("&(Temp)"))
 table.insert(storage,currentTemp)
 printTableAvg(storage)
 end
 end
end

function printTableAvg (t)
 local elements = 0
 local sum = 0
 local ave = 0

 for k,v in pairs(t) do
 sum = sum + v
 elements = elements + 1
 end
 ave = sum / elements
 os.trace("Average Temperature Is %.2f", ave)
 avl.pfal(string.format("MSG.Send.Rawserial0,0,\"Average Temperature Is
%s\r\n\"",ave))

end

while 1 do
 local ev = avl.event(10000)
 -- x = x + 1

Using Lua scripts for FOX series and BOLERO40 series 25

 if (ev == nil) then
-- loop ()
 else
 event(ev)
 end
end

make_script.sh
#! /bin/sh

Convert LUA scripts to frp archive files

@file make_script.sh 2017-05-12 @author username

file=${1:-script.txt}

if [! -f $file]; then
echo "Using make_script.sh script.txt"
exit 0
fi

echo "Write $file file into frp..."

echo '<?xml version="1.0" encoding="UTF-8"?>
<falcom-resource-package xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
<version-info number="2"/>
 <resources>
 <agps> <file format="flat" size="0" crc="@md5sum">@script</file>
</agps>
</resources>
<devices>
 <device class="all" type="all">
 <module type="gps" option="ublox">
 <resource type="agps">
 <version>@script</version>
 <file format="flat" crc="@md5sum">@script</file>
 <descriptor firmwaresize="0" crc="null">null</descriptor>
 </resource>
 </module>
 </device>
</devices>
</falcom-resource-package>' > content.xml
sed -i -e s/@script/$file/g -e s/@md5sum/`md5sum $file | cut -d ' ' -f 1`/g
content.xml

final=${file%%.*}.frp
#final=`date +avl3_script_%y%m%d.frp`
if [-f $final]; then rm $final; fi
zip -9 $final $file content.xml
rm content.xml

	Deploying Lua Scripts
	Prerequisites
	Development Setup
	Tracker/Hardware Setup
	Activate Lua Premium Feature

	Using Lua Scripts
	Lua Sample Scripts
	Load Lua on Device
	Deploy a Lua File on Device
	Activate Debug Output

	Reference
	Lua Commands
	Lua Events
	Lua States

	Appendix: Sample Scripts
	averagetemp.lua
	make_script.sh

