

Application Note:

Using the ePack SDK

Part Number APP-0113
Revision C May 2023

Using the ePack SDK Application Note 2

Intellectual Property
© 2023 Lantronix, Inc. All rights reserved. No part of the contents of this publication may be
transmitted or reproduced in any form or by any means without the written permission of
Lantronix.

Lantronix is a registered trademark of Lantronix, Inc. in the United States and other countries.

Patented: http://patents.lantronix.com; additional patents pending.

All trademarks and trade names are the property of their respective holders.

Contacts
Lantronix, Inc.
48 Discovery, Suite 250
Irvine, CA 92618, USA

Toll Free: 800-526-8766
Phone: 949-453-3990
Fax: 949-453-3995

Technical Support
Online: www.lantronix.com/technical-support

Sales Offices
For a current list of our domestic and international sales offices, go to the Lantronix web site at
www.lantronix.com/about/contact

Disclaimer
All information contained herein is provided “AS IS.” Lantronix undertakes no obligation to
update the information in this publication. Lantronix does not make, and specifically disclaims,
all warranties of any kind (express, implied or otherwise) regarding title, non-infringement,
fitness, quality, accuracy, completeness, usefulness, suitability or performance of the
information provided herein. Lantronix shall have no liability whatsoever to any user for any
damages, losses and causes of action (whether in contract or in tort or otherwise) in
connection with the user’s access or usage of any of the information or content contained
herein. The information and specifications contained in this document are subject to change
without notice.

http://patents.lantronix.com/
http://www.lantronix.com/technical-support
http://www.lantronix.com/about/contact

Using the ePack SDK Application Note 3

Revision History

Date Rev. Comments

March 2021 A Initial document.

October 2021 B Added UCI defaults and device configuration using etc/config/

May 2023 C Added minor updates to topics “Making Image Using Image Builder” and
“Adding Package Feeds”.

For the latest revision of this product document, please check our online documentation at
www.lantronix.com/support/documentation.

Contents
Using the ePack SDK ... 4

Additional Documentation .. 4
Download the SDK Files .. 4
OS Requirements and Prerequisites ... 4

Creating a Custom Package Using the SDK .. 5
Sample Application .. 5
Extract the SDK ... 5
Add Your Package Feeds .. 5
To Make the Custom Package .. 5
Integrating the Custom Package into an Image .. 6

Building an Image using Image Builder .. 7
Extract Image Builder .. 7
Make Image Using Image Builder ... 7
UCI Defaults .. 9
Device Configuration ... 10

Customizing the UI Using Image Builder .. 11
Firmware File Name and Configuration Version ... 11
Customize UI Elements ... 11

http://www.lantronix.com/support/documentation.html

Using the ePack SDK Application Note 4

Using the ePack SDK
This document describes how to use the Lantronix ePack SDK to create custom packages and Lantronix
Image Builder to build custom firmware images. It also describes how to customize UI items using Image
Builder.

This document assumes that you have a computer running a supported Linux distribution (or VM) and
are familiar with the OpenWrt build system and the Lantronix Web Admin for configuring E21x and E22x
series devices.

The command examples use the Bash command interpreter in a development environment.

Additional Documentation
The following documentation resources provide background and reference information.

• OpenWrt online documentation (refer to developer guide)
• Lantronix ePack User Manual for E210 and E220 Series Devices

Download the SDK Files
To download the Lantronix ePack SDK, contact Lantronix Tech Support.

The SDK includes the following components:

• Lantronix ePack SDK
• Lantronix Image Builder

The Lantronix ePack SDK is a pre-compiled environment suitable for creating custom packages to install
on the device or build into the firmware. It's provided as a tar.xz archive.

The Lantronix Image Builder is a pre-compiled environment suitable for creating custom images for
Lantronix E21x or E22x series devices. It's also provided as a tar.xz archive.

OS Requirements and Prerequisites
The SDK and Image Builder run in 64-bit Linux. It is recommended that you use a Linux environment,
standalone or virtual machine.

The prerequisites are the same as for the OpenWrt build system. Please refer to the OpenWrt Developer
guide for build system setup, build prerequisites in different Linux distributions, and package
prerequisites.

https://openwrt.org/docs/start
https://cdn.lantronix.com/wp-content/uploads/pdf/ePACK-User-Guide.pdf
https://www.lantronix.com/support/
https://openwrt.org/docs/guide-developer/start
https://openwrt.org/docs/guide-developer/start

Using the ePack SDK Application Note 5

Creating a Custom Package Using the SDK
Use the SDK to create a custom package. The custom package can then be included into a firmware
image using Image Builder, or alternatively, it can be installed using the OPKG package manager (see the
Lantronix ePack User Manual).

Sample Application
You will need a sample application to create the custom package. If you don't already have an
application, you can create a simple "Hello, world" application with a structure similar to the following:

<packagename>/
|
+-- Makefile
+-- src/

|
+-- source and include files
+-- Makefile

Note: <packagename> must be one word with no spaces.

Extract the SDK
To extract the SDK archive use the following command.

tar -xvf <sdk-filename.tar.xz>

replacing sdk-filename with the actual file name of the tar archive.

Add Your Package Feeds
The feeds.conf.default file in the directory where you extracted the SDK contains the list of
package feeds. You should modify this file in the following cases:

• If the package requires additional dependency packages supplied by OpenWrt, add the
repository or change to the proper repository.

• If the package requires additional dependency packages supplied by your own (custom)
repository, add your own repository.

• See https://openwrt.org/docs/guide-developer/feeds

To Make the Custom Package
Note: All Linux commands should be run as user. Do not use root or sudo.

1. In the package/ directory, create a directory for the package. The name of the directory
should not include any spaces. For this example we'll call it "packagename".

https://openwrt.org/docs/guide-developer/feeds

Using the ePack SDK Application Note 6

2. Navigate to the "packagename" directory, and create or copy a Makefile.
3. In the "packagename" directory, copy or create the src/ directory.
4. Navigate to the src/ directory, and copy or create the Makefile mentioning how to build the

package. This can be ignored and can also be done from package/Makefile in the parent
directory. (Refer to Openwrt online documentation for Makefile details.)

5. Still in the src/ directory, copy or create the source files and include files.
6. If the package requires additional dependency packages having no supplier/repository, then you

will need to create those packages as described in steps 1-5.
7. If the package requires additional dependency packages supplied by OpenWrt or by your own

repository, modify the feeds.conf.default file as described in the previous section, Add
Your Package Feeds. If you add or modify feeds, use the following commands to update and
install the feeds:

./scripts/feeds/update -a

./scripts/feeds/install -a

8. Run make menuconfig to open the SDK's menu and select the package. Find the package
that you want to build and select it by pressing "m". This will also select all the dependencies.
Save the configuration and exit the menu.

9. To compile the package, run

make package/<packagename>/compile

Note: You can use V=s option for detailed logs of the build.

10. After the package is compiled, the generated .ipk file (or files) are created in the
bin/target/ramips/mt7620/packages/ directory.

Integrating the Custom Package into an Image
Complete these steps to integrate the package you just compiled into the image. The image build steps
are described in detail in the next section, Building an Image using Image Builder.

1. Copy the .ipk (or .ipk files) that you created in the previous procedure and paste it into the
packages/ directory of the Image Builder.

2. From the SDK directory, read the tmp/.packageinfo file to find the package and
dependencies information. Refer to the following example for the "helloworld" package:

**
Source-Makefile: package/helloworld/Makefile

Package: helloworld
Submenu: Bin Packages
Version: 0-1

https://openwrt.org/docs/start

Using the ePack SDK Application Note 7

Depends: +libc +GCC_LIBSSP:libssp +USE_GLIBC:librt +USE_GLIBC:libpthread
Conflicts:
Menu-Depends:
Provides:
Section: utils
Category: Lantronix
Repository: base
Title: HelloWorld
Maintainer:
Source:
Type: ipkg
Description: This is a sample HelloWorld program for SDK.

@@

**

3. Copy all of the information for the package and its dependencies as shown above into
.packageinfo of the Image Builder. Be careful to ensure that the information is correct
before proceeding because if this fails then the build will fail.

4. Follow the procedure for building the image as described in the next section. Put the package
names and dependencies in the <addCustomPackages> field of the PACKAGES variable.

Building an Image using Image Builder
The Lantronix Image Builder is a pre-compiled environment suitable for creating custom images for
Lantronix E21x or E22x series devices.

Extract Image Builder
To extract the Image Builder use the following command.

$ tar -xvf <imagebuilder-filename.tar.xz>

replacing imagebuilder-filename with the actual file name of the tar archive.

Make Image Using Image Builder
Note: Use make help command to show help information.

1. To get the list of installed packages, enter the following command.

$ cat .config | grep -v '=m' | grep -v 'is not set'| grep CONFIG |
awk -F'^CONFIG_' '{print$2}' | sed -E 's/PACKAGE_//' | grep -v
'^DEFAULT' | awk -F'=' '{print$1}' > installed_packages.txt

2. To get the list of IPK packages, enter the following command.

Using the ePack SDK Application Note 8

$ cat .config | grep -v '=y' | grep -v 'is not set'| grep CONFIG |
awk -F'^CONFIG_' '{print$2}' | sed -E 's/PACKAGE_//' | grep -v
'^DEFAULT' | awk -F'=' '{print$1}' > ipk_packages.txt

3. To separate the above new line values into space separated values and remove all CAPITAL
strings, use the following command:

variable=$(cat ipk_packages.txt or installed_packages.txt| grep -v
'[!A-Z]' | sed ':a;N;$!ba;s/\n/ /g')

Note: Run this command once for installed_packages.txt and once for ipk_packages.txt.
4. The following packages will be ignored. Note the minus sign "-" before the package name of

excluded packages.

Ignored packages ==

-mipsel -odhcp6c_ext_cer_id -odhcpd-ipv6only -odhcpd_ipv6only_ext_cer_id -luci-lib-nixio_notls

5. To build the image, use the following command. (Do step 5 or 6 or 7, but not all three steps.)

$ make image PROFILE="<Profile name>" PACKAGES="<Step_3_output> +
<IgnoredPackages>"

To add custom packages or exclude unwanted packages use the following command.

$ make image PROFILE="<Profile name>" PACKAGES="<Step_3_output> +
<IgnoredPackages> + <addCustomPackages> + -<unwantedPackages>"

• PROFILE - The profile name should be "e21x" or "e22x"
• PACKAGES – Note: Package names are space separated. Excluded packages are

preceded by a minus sign "-".
o <Step_3_output> - This is the list of installed and IPK packages in the image.
o <IgnoredPackages> - For ignored packages, copy the list from step 4.
o <addCustomPackages> - To add custom packages, follow the instructions in

Creating a Custom Package Using the SDK to compile and integrate the package
files (IPKs) and then list them here.

o <unwantedPackages> - List the unwanted packages with a "-" before each
package. Note that if the unwanted package is a dependency for another
package, the build may fail.

• Output - After completion of the image build, the build files will be output to the
bin/targets/ramips/mt7620/ directory of the Image Builder.

6. To add any custom files into the firmware as default values, create a "files" directory in the
Image Builder directory and create a source tree that matches the source tree where the files
need to be copied or replaced in the device.

Using the ePack SDK Application Note 9

Then use the FILES variable in the make command.

$ make image PROFILE="<Profile name>" PACKAGES="<Step_3_output> +
<IgnoredPackages> + <addCustomPackages> + -<unwantedPackages>"
FILES="files/"

After completion of the image build, the build files will be output to the
bin/targets/ramips/mt7620/ directory of the Image Builder.

7. To disable inbuilt services from /etc/init.d/, use the DISABLED_SERVICES variable in the make
command.

$ make image PROFILE="<Profile name>" PACKAGES="<Step_3_output> +
<IgnoredPackages> + <addCustomPackages> + -<unwantedPackages>"
FILES="files/" DISABLED_SERVICES="<nameOfServicesSpaceSeparated>"

After completion of the image build, the build files will be output to the
bin/targets/ramips/mt7620/ directory of the Image Builder.

8. To list packages that get installed into the image. (Use the make help command to get more
details). Two examples are provided below:

make manifest PROFILE="e22x" //To list all packages that get installed
in default firmware

make manifest PROFILE="e22x" PACKAGES="<addCustomPackages>"

//To list all packages that get installed
in firmware after additional custom
packages

UCI Defaults
OpenWrt relies on UCI, the Unified Configuration Interface, to configure its core services. UCI defaults
provides a way to preconfigure your images, using UCI.

To set some system defaults when the device is built, it is possible to create a script in the
"imagebuilder/files/etc/uci-defaults" directory. Scripts in that folder are copied to the device and
executed by /etc/init.d/boot the first time the device boots. If the scripts exit with code 0 they are
deleted afterwards. Scripts that exit with non-zero exit code are not deleted and will be re-executed at
the next boot until they also successfully exit.

To update the runtime configuration using a uci-defaults script:

1. Under the "imagebuilder/files/etc/" directory, create a folder called "uci-defaults".
2. Under the "uci-defaults" folder, create a script file called "99-default-settings".

Using the ePack SDK Application Note 10

3. Use SSH to access your E2xx series device and check for the parameters that you want to
change. Use the uci show <config> command to get the exact parameter name.

Example (show configuration parameters from network file):

uci show network

Example output:

4. In the "99_default_settings" script file, create a script similar to the example shown below: Use

uci set (line 3) command to set the value of the given option and uci commit (line 4) to
write the changes to the filesystem. For multiple parameters, enter each uci set command on
a new line before the uci commit command. Lines 1, 6, and 7 are fixed.

5. Give execute permission to "99_default_settings" script using the following command:

chmod +x 99_default_settings

6. Follow the Image Builder procedure to make the image (use the FILES variable in the make
command) and install the firmware on the device.

Device Configuration
There are two ways to update the device configuration. If you will modify only a few parameters or if the
parameter should be modified after the image is built, use the method as described in the previous
section, UCI Defaults. Otherwise, if there are more than a few changes, use the procedure described
below.

To update configuration:

1. Prepare the device with the custom configurations.

Using the ePack SDK Application Note 11

2. Copy the modified files from the "/etc/config" directory from the device, keeping the source
tree file structure.

3. Paste the copied files under the "imagebuilder/files/etc/config/" folder .
4. Follow the Image Builder procedure to make the image (use the FILES variable in the make

command) and install the firmware on the device.

Note: Device specific parameters in the copied config folder might also get changed. To undo those
changes, use the "uci-defaults" script.

Customizing the UI Using Image Builder
You can use the Image Builder to customize the UI and other modifications.

Firmware File Name and Configuration Version
Change the firmware file name and the configuration version by modifying the .config file in the
<imagebuilder> directory.

To change the firmware file and configuration version:

1. Change the following options in the .config file:
• CONFIG_VERSION_DIST="<Lantronix>"
• CONFIG_VERSION_NUMBER="<version-number>"

Important: Do not change any other parameters in the .config file, as doing so may cause the
image build to fail.

2. To view that the file name has been modified, build the image and check the output in the
<imagebuilder>/bin/targets/ramips/mt7620/ directory.

Customize UI Elements
Image Builder provides ways to modify the current theme (logo, icons, stylesheet) and customize other
items such as the SSH login banner and certain text strings and parameters.

Note: The SDK does not support replacing the UI theme.

To customize UI elements:

1. View the directory structure of the files on the device by navigating to the following directory in
Image Builder and drilling down to find the desired UI theme file and other parameter.

ROOT="<imagebuilder>/build_dir/target-mipsel_24kc_musl/root.orig-
ramips/"

Using the ePack SDK Application Note 12

2. Go to the <imagebuilder>/files directory (or create "files" directory if it doesn't exist) and
create a source tree that matches the source tree where the files need to be copied or replaced.

3. Copy the file from the ROOT and paste it under the "files" directory. Modify or replace the file
according to your requirement.

4. Follow the Image Builder procedure to make the image (use the FILES variable in the make
command) and install the firmware on the device.

Refer to Table 1 for a list of commonly customized elements. The numbers in the table correspond to
the labels in Figure 1, 2, 3, and 4 showing the location of the elements on the user interface.

Label UI Element File Location/Description

1 SSH banner "ROOT/etc/banner"

2 Login page logo "ROOT/www/luci-static/rosy/logo.png"

3 Logo on all other pages in Web Admin "ROOT/www/luci-static/rosy/logo_t.png"

4 Other Icons/logos in Web Admin "ROOT/www/luci-static"

5 Default hostname See UCI Defaults or Device Configuration.

6 "Powered by" string "ROOT/etc/openwrt_release"

Modify DISTRIB_DESCRIPTION parameter.

7 Quick Setup information "ROOT/usr/lib/lua/luci/view/quicksetup/quicksetup
.htm"

8 Stylesheet – fonts, sizes, color, styles "ROOT/www/luci-static/rosy/cascade.css"

9 Default AP SSID See UCI Defaults or Device Configuration.

Table 1: UI elements

Example:

To customize the SSH login banner as shown in Figure 1, copy the banner file from the ROOT/etc/
directory. Navigate to the <imagebuilder>/files directory and create the etc/ directory. Paste
the banner file here and modify it as per your requirement. Build the image using Image Builder and
install the firmware on the device.

Using the ePack SDK Application Note 13

Figure 1: SSH Login Banner

Figure 2: Web Administration Login page

Using the ePack SDK Application Note 14

Figure 3: Quick Setup page (logged in user)

Figure 4: Default AP SSID

	Using the ePack SDK
	Additional Documentation
	Download the SDK Files
	OS Requirements and Prerequisites

	Creating a Custom Package Using the SDK
	Sample Application
	Extract the SDK
	Add Your Package Feeds
	To Make the Custom Package
	Integrating the Custom Package into an Image

	Building an Image using Image Builder
	Extract Image Builder
	Make Image Using Image Builder
	UCI Defaults
	Device Configuration

	Customizing the UI Using Image Builder
	Firmware File Name and Configuration Version
	Customize UI Elements

